


2 CROSSTALK The Journal of Defense Software Engineering March 2007

Being Explicit About Security Weaknesses
This article describes the ongoing creation of the Common Weakness
Enumeration dictionary of software security weaknesses to serve as a
unifying language of discourse and as a measuring stick for comparing
tools and services of the industry.
by Robert A. Martin

Secure Coding Standards
This article discusses the details of the current efforts created by the
International Organization for Standardization/International
Electrotechnical Commission and Computer Emergency Readiness
Team to develop software security standards.
by James W. Moore and Robert C. Seacord

How a Variety of Information Assurance Methods
Delivers Software Security in the United Kingdom
This article describes how Common Criteria can be used as a framework
for genesis of further assurance methods and shows how its philosophies
have been adapted into a variety of pragmatic assurance techniques not
just for single vendor solutions but for complete systems, sub-systems,
network technologies, security architectures, and even managed service
provisions.
by Kevin Sloan and Mike Ormerod

High-Leverage Techniques for Software Security
The authors explain how a blend of software security and software
development is needed in practice, using three categories of tools
to create such a blend: threat modeling, risk analysis, and security
assessment and testing.
by Idongesit Mkpong-Ruffin and Dr. David A. Umphress

Baking in Security During the Systems Development
Life Cycle
This article reinforces the integrating of security activities into the
systems development life cycle to combat security threats, including
security phase activities such as requirements, design, build, or test to
ensure that governance or industry best-practices are satisfied, and that
the goal of the system is achieved without conflict.
by Kwok H. Cheng

Cross-Domain Information Sharing in a Tactical
Environment
This article introduces aspects of the tactical environment and some
of the complexities of sharing information in a tactical network,
describes the security challenges, and suggests a high-level security
architecture that applies adequate measures without compromising the
information sharing needs of the warfighter.
by Mel Crocker 

4

9

13

18

22

26

3
8

12
30
31

D eD e p ap a rr t m e n t st m e n t s

From the Publisher

Coming Events

Web Sites

SSTC 2007

BackTalk

SoftwSoftwaarree SecurSecurityity CrossTalk
CO-SPONSORS:

DOD-CIO

NAVAIR

76 SMXG

309 SMXG

402 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Jeff Schwalb

Kevin Stamey

Randy Hill

Diane Suchan

Joe Jarzombek

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); U.S.
Navy (USN); U.S. Air Force (USAF); and the U.S.
Department of Homeland Security (DHS). DoD-CIO
co-sponsor: Assistant Secretary of Defense
(Networks and Information Integration). USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); Ogden-
ALC 309 SMXG; and Warner Robins-ALC 402
SMXG. DHS co-sponsor: National Cyber Security
Division of the Office of Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 21.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

 



March 2007 www.stsc.hill.af.mil 3

From the Publisher

Ihave worked with Joe Jarzombek and the Department of Homeland Security (DHS)
over the past years and have seen the result of their commitment to software secu-

rity in a growing number of resources for assistance. While most people have a basic
definition of security, I’ll share the DHS definition: Protection against intentional subversion
or forced failure. Preservation of the three subordinate properties that make up security – availabili-
ty, integrity, and confidentiality.

With all the current efforts to secure software, our nation still encounters attacks.
It is estimated that 90 percent of reported security incidents result from exploits against defects
in the software design or code. This is especially troubling because many of the vulnerabilities
that enable these attacks can be prevented with the use of solid software engineering principles.
Given that, why do we still have difficulty ensuring the integrity of software that is so key to
protecting the infrastructure from threats and vulnerabilities, reducing overall risk to cyber
attack?  

In a continuing effort to develop defenses to software attacks and educate software person-
nel on implementing these defenses, DHS is involved with multiple initiatives. Their primary
goals while deploying software security practices include the following:
• Exploitable faults and other weaknesses are avoided by well-intentioned developers.
• The likelihood is greatly reduced or eliminated that malicious developers can intentionally

implant exploitable faults and weaknesses or malicious logic into the software.
• The software is attack-resistant, attack-tolerant, and attack-resilient.

To this end, a great deal of attention has been focused on their BuildSecurityIn initiative. By
accessing <http://BuildSecurityIn.us-cert.gov>, developers, acquirers, and users can find a
broad range of information about best practices, tools, guidelines, rules, principles, and other
knowledge to help organizations build secure and reliable software. Through DHS’ sponsorship
of conferences and workshops, a common body of knowledge and a repository of practical
guidance for software developers and architects are being produced to improve the quality, reli-
ability, and dependability of software. In collaboration with industry, academia, and government
partners, DHS’ approach to addressing software assurance encompasses the following compo-
nents:
• People – Education and training for developers and users.
• Processes – Practical guidelines and best practices for the development of secure software.
• Technology – Tools for evaluating software vulnerabilities and quality.
• Acquisition – Specifications and guidelines for acquisition and outsourcing.

I am pleased that CrossTalk continues to be a forum for educating the software com-
munity on software security. Some of this month’s authors have personally worked with DHS
on the topics discussed. We begin with Robert A. Martin’s discussion of the Common
Weaknesses dictionary in Being Explicit About Security Weaknesses. Standards provide consolidated
resources for the software community, especially developers, to glean specific techniques for
developing secure software. We build on this with Secure Coding Standards by James W. Moore and
Robert C. Seacord and How a Variety of Information Assurance Methods Delivers Software Security in
the United Kingdom by Kevin Sloan and Mike Ormerod. Going beyond standards, we begin our
discussion of actual practices with Idongesit Mkpong-Ruffin and Dr. David A. Umphress’ arti-
cle, High-Leverage Techniques for Software Security. Next, Baking in Security During the Systems
Development Life Cycle by Kwok H. Cheng emphasizes the DHS philosophy that security must be
part of the entire software development process. We conclude with Mel Crocker’s insights on
certifications and technological advances to enable information sharing across platforms in
Cross-Domain Information Sharing in a Tactical Environment.

I echo Mr. Jarzombek’s challenges in past issues to our readers to take the time to under-
stand and apply these principles and techniques. Through this effort, we can continue to expand
the software security community of practice.

Collaborating for Secure Software

Elizabeth Starrett
Publisher



4 CROSSTALK The Journal of Defense Software Engineering March 2007

Software Security

More and more organizations want
assurance that the software products

they acquire and develop are free of
known types of security weaknesses.
High-quality tools and services for finding
security weaknesses in code are new. The
question of which tool/service is appro-
priate/better for a particular job is hard to
answer given the lack of structure and
definition in the software product assess-
ment industry.

There are several ongoing efforts to
begin to resolve some of these shortcom-
ings, including the Department of
Homeland Security (DHS) National Cyber
Security Division (NCSD)-sponsored
Software Assurance Metrics and Tool
Evaluation (SAMATE) project [1] led by
the National Institute of Standards and
Technology (NIST), the Object Manage-
ment Group (OMG) Software Assurance
(SwA) Special Interest Group (SIG) [2],
and the Department of Defense (DoD)-
sponsored Code Assessment Methodol-
ogy Project, which is part of the
Protection of Vital Data  effort [3] con-
ducted by Concurrent Technologies
Corporation, among others. While these
efforts are well placed, timely in their
objectives, and will surely yield high value
in the end, they require a common descrip-
tion of the underlying security weaknesses
that can lead to exploitable vulnerabilities
in the software that they are targeted to
resolve. Without such a common descrip-
tion, these efforts, as well as the DoD’s
own software and systems assurance
efforts, cannot move forward in a mean-
ingful fashion or be aligned and integrated
with each other to provide the needed
answers to secure our networked systems.

A Different Approach
Past attempts at developing this kind of
effort have been limited by a very narrow
technical domain focus or have largely
focused on high-level theories, tax-
onomies, or schemes that do not reach the
level of detail or variety of security issues

that are found in today’s products. As an
alternate approach, under sponsorship of
DHS NCSD, and as part of MITRE’s par-
ticipation in the DHS-sponsored NIST
SAMATE effort, MITRE investigated the
possibility of leveraging the Common
Vulnerabilities and Exposures (CVE) ini-
tiative’s experience in analyzing more than
20,000 real-world vulnerabilities reported
and discussed by industry and academia.

As part of the creation of the CVE list
[4] that is used as the source of vulnera-
bilities for the National Vulnerability
Database [5], MITRE’s CVE initiative
during the last six years has developed a
preliminary classification and categoriza-
tion of vulnerabilities, attacks, faults, and
other concepts that can be used to help
define this arena. However, the original
groupings used in the development of
CVE, while sufficient for that task, were
too rough to be used to identify and cate-
gorize the functionality found within the
offerings of the code security assessment
industry. For example, in order to support
the development of CVE content, it is
sufficient to separate the reported vulner-
abilities in products into working cate-
gories such as weak/bad authentication,
buffer overflow, cryptographic error,
denial of service, directory traversal,
information leak, or cross-site scripting.
For assessing code, however, this granular-
ity of classification groupings was too
large and indefinite. Of the categories list-
ed, for example, cross-site scripting actual-
ly has eight different types of issues that
need to be addressed or looked for when
assessing code; buffer overflow covered
10 different code constructs to look for.

So, to support use in code assessment,
additional fidelity and succinctness was
needed as well as additional details and
descriptive information for each of the dif-
ferent categories such as effects, behaviors,
and the implementation details. The pre-
liminary classification and categorization
work used in the development of CVE was
revised to address the types of issues dis-

cussed above and the result was called the
Preliminary List of Vulnerability Examples
for Researchers (PLOVER) [6]. PLOVER
was a document that listed more than 1,500
diverse, real-world examples of vulnerabil-
ities, identified by their CVE name. The
vulnerabilities are organized within a
detailed conceptual framework that enu-
merates the 300 individual types of weak-
nesses that cause the vulnerabilities. The
weaknesses were simply grouped within 28
higher-level categories with a large number
of real-world vulnerability examples for
each type of weakness. PLOVER repre-
sents the first cut of a truly bottom-up
effort to take real-world observed,
exploitable vulnerabilities that do exist in
code, to abstract them and group them into
common classes representing more general
potential weaknesses that could lead to
exploitable vulnerabilities in code, and
then, finally to organize them in an appro-
priate relative structure so as to make them
accessible and useful to a diverse set of
audiences for a diverse set of purposes.

Creating a Community Effort
As part of the DoD/DHS SwA working
groups and the NIST SAMATE project,
MITRE fostered the creation of a commu-
nity of partners from industry, academia,
and government to develop, review, use,
and support a common weaknesses dictio-
nary that can be used by those looking for
weaknesses in code, design, or architecture
as well as those teaching and training soft-
ware developers about the code, design, or
architecture weaknesses that they should
avoid due to the security problems they can
have on applications, systems, and net-
works. The effort is called the Common
Weakness Enumeration (CWE) initiative.
The work from PLOVER became the
major source of content for draft one of
the CWE dictionary.

An important element of the CWE
initiative is to be transparent to all on what
we are doing, how we are doing it, and
what we are using to develop the CWE

Being Explicit About Security Weaknesses
Robert A. Martin

MITRE Corporation

Software acquirers want assurance that the products they are obtaining are reviewed for known types of security weaknesses.
Acquisition groups in large government and private organizations are beginning to use such reviews as part of future con-
tracts, but the tools and services for performing them are new and, until recently, there was no nomenclature, taxonomy, or
standard to define their capabilities and coverage. A standard dictionary of software security weaknesses has been created by
the community to serve as a unifying language of discourse and as a measuring stick for comparing tools and services.



Being Explicit About Security Weaknesses

dictionary. We believe this transparency is
important during the initial creation of the
CWE dictionary so that all of the partici-
pants in the CWE community are com-
fortable with the end result and will not be
hesitant about incorporating CWE into
what they do. Figure 1 shows the overall
CWE context and community involve-
ment of the effort. We believe the trans-
parency should also be available to partic-
ipants and users that will visit after the ini-
tial CWE dictionary is available on the
CWE Web site [7]; all of the publicly avail-
able source content is being hosted on the
site for anyone to review or use for their
own research and analysis.

Currently, more than 41 organizations,
shown in Table 1 (see page 6), are partici-
pating in the creation and population of
the CWE dictionary.

Kick-Starting a Dictionary
To continue the creation of the CWE dic-
tionary, we brought together as much pub-
lic content as possible using the following
three primary sources:
• The PLOVER collection [6] that iden-

tified more than 300 weakness types
created by determining the root issues
behind 1,500 of the vulnerabilities in

the CVE List [4].
• The Comprehensive, Lightweight

Application Security Process (CLASP)
from Secure Software, which yielded
more than 90 weakness concepts [8].

• The issues contained in Fortify’s Seven
Pernicious Kingdoms papers, which con-
tributed more than 110 weakness con-
cepts [9].
Working from these collections as well

as those contained in the 13 other publicly
available information sources listed on the
CWE Web site sources page, we developed
the first draft of the CWE list, which
entailed almost 500 separate weaknesses.
It took approximately six months to move
from what we created in PLOVER to the
first draft of CWE. The CWE content is
captured in an XML document and fol-
lows the CWE schema. Two months later,
we updated CWE to draft 2 with the
incorporation of changes that included
cleaning up the names of items, reworking
the structure, and filling in the descriptive
details for many more of the items. The
first change to the CWE schema came
about with the addition of language and
platform ties for weaknesses and the addi-
tion of specific CWE identifications for
each weakness.

Covering What Tools Find
While the third draft of CWE continued
expanding the descriptions and improving
the consistency and linkages, subsequent
drafts will incorporate the specific details
and descriptions of the 16 organizations
that have agreed to contribute their intel-
lectual property to the CWE initiative.
Under non-disclosure agreements with
MITRE, which allow the merged collec-
tion of their individual contributions to be
publicly shared in the CWE List,
Application Security Consortium, Cenzec,
Core Security, Coverity, Fortify,
Interoperability Clearinghouse, Klocwork,
Ounce Labs, Parasoft, proServices
Corporation, Secure Software, Security
Innovation Inc., SofCheck, SPI Dynamics,
Veracode, and Watchfire are all contribut-
ing their knowledge and experience to
building out the CWE dictionary. Draft 4
is the first draft version to include details
from this set of information sources.

Draft 5 of CWE encompasses more
than 600 nodes with specific details and
examples of weaknesses for many of the
entries. Figure 2 shows the transition from
PLOVER to CWE drafts 1-5 and the con-
tent structure changes that occurred dur-
ing the revisions. While the initial transi-

March 2007 www.stsc.hill.af.mil 5

Table 1: The Common

Weakness Enumeration

Community

• AppSIC, LLC.
• Aspect Security
• Cenzic, Inc.
• Center for Education and Research in
 Information Assurance and Security/
 Purdue University
• Computer Emergency Response Team/
 Coordination Center (CERT/CC)
• Cigital, Inc.
• Code Scan Labs
• Core Security Technologies
• Coverity, Inc.
• Fortify Software, Inc.
• IBM
• Interoperability Clearing House
• James Madison University
• Johns Hopkins University Applied
 Physics Laboratory
• KDM Analytics
• Kestrel Technology
• Klocwork, Inc.
•

• MITRE Corporation
• NIST
• National Security Agency (NSA)
• North Carolina State University
• OMG
• Open Web Application Security Project
 (OWASP)
• Oracle Corporation
• Ounce Labs, Inc.
• Palamida
• Parasoft Corporation
• proServices Corporation
• Secure Software, Inc.
• Security Innovation, Inc.
• Security University
• Semantic Designs, Inc.
• SofCheck, Inc.
• SPI Dynamics, Inc.
• Unisys
• VERACODE
• Watchfire Corporation
•

• call and count the same

• enable metrics

CWE

Dictionary

Figure 1: The CWE Effort’s Context and Community



Software Security

tion from PLOVER to CWE took six
months, each subsequent updated draft
has occurred on a bimonthly basis.

In addition to the sources supplying spe-
cific knowledge from tools or analysts, we
are also leveraging the work, ideas, and con-
tributions of researchers at Carnegie
Mellon’s CERT/CC, IBM, KDM Analytics,
Kestrel Technology, MIT’s Lincoln Labs,
North Carolina State University, Oracle, the
OWASP, Security Institute, Unisys, the
WASC, Whitehat Security, and any other
interested parties that wish to contribute.

The merging and combining of the con-
tributed materials is being incorporated into

several of drafts of CWE (draft 6 in
February, 2007 and draft 7 in May, 2007),
which will be available for open community
comments and refinement as CWE moves
forward. A major part of the future work will
be refining and defining the required attrib-
utes of CWE elements into a more formal
schema defining the metadata structure nec-
essary to support the various uses of CWE
dictionary. Figure 3 shows a sample of the
descriptive content of an entry from CWE
draft 5. This example is for the Double Free
weakness, CWE identification (ID) 415.

However, the CWE schema will also
be driven by the need to align with and

support the SAMATE and OMG SwA
SIG efforts that are developing software
metrics, software security tool metrics, the
software security tool survey, the method-
ology for validating software security tool
claims, and reference datasets for testing.

For example, a major aspect of the
SAMATE project is the development and
open sharing of test applications that have
been salted with known weaknesses so
that those wishing to see how effective a
particular tool or technique is in finding
that type of weakness will have test mate-
rials readily available. These test sets are
referred to as the SAMATE test reference
datasets (TRDs). NIST has chosen to
organize the SAMATE TRDs by CWE
weakness type and will also include vary-
ing levels of complexity, as appropriate to
each type of weakness, so that tools that
are more or less effective in finding com-
plex examples of a particular CWE weak-
ness can be identified. Correct constructs
that are closely aligned to the CWEs but
are correct implementations will also be
included in the TRDs to help identify the
false-positive effectiveness of the tools.
Adding complexity descriptions to the
CWE schema will allow SAMATE and
CWE to continue to support each other.

The OMG’s SwA SIG, which is using
CWEs as one type of software issue that
tools will need to be able to locate within
the eventual OMG SwA technology
approach, needs more formal descriptions
of the weaknesses in CWE to allow their
technological approaches to apply. OMG’s
planned approach for this is the use of
their Semantics of Business Vocabulary
and Rules (SBVR) language to articulate
formal language expressions of the differ-
ent CWEs. The CWE schema will have to
be enhanced to allow SBVR expressions
of each CWE to be included. The CWE
will house the official version of the
SBVR expression of that CWE.

The CWE dictionary content is already
provided in several formats and will have
additional formats and views added into its
contents as the initiative proceeds.
Currently one of the ways for viewing
CWE is through the CWE content page
that contains an expanding/ contracting
hierarchical taxonometric view while another
is through an alphabetic dictionary. The
end items in the hierarchical view are
hyperlinked to their respective dictionary
entries. Graphical depictions of CWE
content, as well as the contributing
sources, are also available. Finally, the
XML and XML Schema Definition (XSD)
for CWE are provided for those who wish

6 CROSSTALK The Journal of Defense Software Engineering March 2007

PLOVER CWE

draft 1

CWE

draft 2

CWE

draft 3

CWE

draft 4

CWE

draft 5

PLOVER
+

publicly
available

vulnerability
taxonomy
content

CWE
draft 1

+
name

clean up
and

description
expansion

CWE
draft 2

+
definition

expansion
of 150
items,

language/
platform ties
added and
CWE-IDs
assigned

CWE
draft 3

+
50 new

items added,
definitions

expansion of
100 items,

name changes,
and structure
adjusted for
new content

CWE
draft 4

+
45 new

items added,
definitions

expansion of
100 items

Aug 2005 Mar 2006 May 2006 Jul 2006 Sep 2006 Dec 2006

Figure 2: From PLOVER to CWE, Drafts 1-5

Table 1: The Common

Weakness Enumeration

Community

• AppSIC, LLC.
• Aspect Security
• Cenzic, Inc.
• Center for Education and Research in
 Information Assurance and Security/
 Purdue University
• Computer Emergency Response Team/
 Coordination Center (CERT/CC)
• Cigital, Inc.
• Code Scan Labs
• Core Security Technologies
• Coverity, Inc.
• Fortify Software, Inc.
• IBM
• Interoperability Clearing House
• James Madison University
• Johns Hopkins University Applied
 Physics Laboratory
• KDM Analytics
• Kestrel Technology
• Klocwork, Inc.
• Microsoft Corporation
• Massachusets Institute of
 Technology Lincoln Labs

• MITRE Corporation
• NIST
• National Security Agency (NSA)
• North Carolina State University
• OMG
• Open Web Application Security Project
 (OWASP)
• Oracle Corporation
• Ounce Labs, Inc.
• Palamida
• Parasoft Corporation
• proServices Corporation
• Secure Software, Inc.
• Security Innovation, Inc.
• Security University
• Semantic Designs, Inc.
• SofCheck, Inc.
• SPI Dynamics, Inc.
• Unisys
• VERACODE
• Watchfire Corporation
• Web Application Security Consortium
 (WASC)
• Whitehat Security, Inc.

Table 1: The CWE Community

® CERT is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.



Being Explicit About Security Weaknesses

to do their own analysis/review with other
tools. Dot notation representations, a stan-
dard method for encoding graphical plots
of information, will be added in the future.

Finally, a process to acknowledge capa-
bilities that incorporate CWEs has been
established. This CWE Compatibility and
CWE Effectiveness program is similar to
the certification and branding program
used by the CVE effort but has two distinct
parts, compatibility and effectiveness. The
basic stages of the compatibility program
are a formalized process for capability
owners to publicly declare their use of
CWEs and a public documentation of how
their capability fulfills the requirements for
finding those CWEs. The effectiveness
program, which only applies to assessment
capabilities, consists of a public declaration
about which CWEs a capability covers and
collection of publicly available test results,
showing how effective the capability is in
finding those CWEs.

Additional Impact and
Transition Opportunities
Tied to CWE
The establishment of the CWE effort is
yielding consequences of the following
three types: direct impact and value, align-
ment with and support of other existing
efforts, and enablement of new follow-on
efforts to provide value that is not cur-
rently being pursued.

The direct impacts include the follow-
ing:
• Providing a common language of dis-

course for discussing, finding, and
dealing with the causes of software
security vulnerabilities as they are man-
ifested in code, design, or architecture.

• Allowing purchasers to compare, eval-
uate, and select software security tools
and services that are most appropriate
to their needs – including having some
level of assurance of the assortment
of CWEs that a given tool would find.
Software purchasers will be able to
compare coverage of tool and service
offerings against the list of CWEs and
the programming languages that are
used in the software they are acquiring.

• Enabling the verification of coverage
claims made by software security tool
vendors and service providers (this is
supported through CWE metadata
and alignment with the SAMATE ref-
erence dataset).

• Enabling government and industry to
leverage this standardization in their
acquisition contractual terms and con-
ditions.

There will also be a variety of alignment

opportunities where other security-related
efforts and CWE can leverage each other to
the benefit of both. Examples of the syner-
gies that are possible include the following:
• Mapping of CWEs to CVEs that would

help bridge the gap between the potential
sources of vulnerabilities and examples
of their observed instances providing
concrete information for better under-
standing the CWEs and providing some
validation of the CWEs themselves.

• Creating a validation framework for
tool/service vendor claims, whether
used by the purchasers themselves or
through a third-party validation ser-
vice, would be able to heavily leverage
the common weaknesses dictionary as
its basis of analysis. To support this,
the community would need to define
the mechanisms used to exploit the
various CWEs for the purposes of
helping to clarify the CWE groupings

and come up with verification methods
for validating the effectiveness of tools
to identify the presence of CWEs in
code. The effectiveness of these test
approaches could be explored with the
goal of identifying a method or meth-
ods that are effective and economical
to apply to the validation process.

• Establishing a bi-directional alignment
between the common weaknesses enu-
meration and the SAMATE metrics
effort.

• Using the SAMATE software security
tool and services survey effort to
leverage this common weaknesses dic-
tionary as part of the capability frame-
work to effectively and unambiguously
describe various tools and services in a
consistent apples-to-apples fashion.

• Mapping between the CWEs and the
common attack pattern enumeration
and characterization effort that would

March 2007 www.stsc.hill.af.mil 7

Double Free

CWE ID 415

Description Calling free() twice on the same memory address can lead to a buffer overflow.

Likelihood of Exploit Low to Medium

Common Consequences Access control: Doubly freeing memory may result in a write-whatwhere condition,

allowing an attacker to execute arbitrary code.

Potential Mitigations Implementation: Ensure that each allocation is freed only once. After freeing a chunk,

set the pointer to NULL to ensure the pointer cannot be freed again. In complicated

error conditions, be sure that clean-up routines respect the state of allocation properly.

If the language is object oriented, ensure that object destructors delete each chunk of

memory only once.

Demonstrative Example 1: The following code shows a simple example of a double free vulnerability.

Examples

char* ptr = (char*)malloc (SIZE);

...

 free(buf2R1);

free(buf1R2);

}

Observed Examples CAN-2004-0642 - Double-free resultant from certain error conditions.

CAN-2004-0772 - Double-free resultant from certain error conditions.

CAN-2005-1689 - Double-free resultant from certain error conditions.

CAN-2003-0545 - Double-free from invalid ASN.1 encoding.

CAN-2003-1048 - Double-free from malformed GIF.

CAN-2005-0891 - Double-free from malformed GIF.

CVE-2002-0059 - Double-free from malformed compressed data.

Context Notes This is usually resultant from another Weakness, such as an unhandled error or race

condition between threads. It could also be primary to Weaknesses such as buffer

overflows.

Also a Consequence.

When a program calls free() twice with the same argument, the program's memory

management data structures become corrupted. This corruption can cause the

program to crash or, in some circumstances, cause two later calls to malloc() to return

the same pointer. If malloc() returns the same value twice and the program later

gives the attacker control over the data that is written into this doubly-allocated

memory, the program becomes vulnerable to a buffer overflow attack.

Node Relationships Child Of - Resource Management Errors (399)

Peer - Use After Free (416)

Peer - Write-what-where condition (123)

Parent Of - Signal handler race condition (364)

Source Taxonomies PLOVER - DFREE - Double-Free Vulnerability

7 Pernicious Kingdoms - Double Free

CLASP - Doubly freeing memory

Applicable Platforms C

C++

Figure 3: Entry for CWE-ID 415, Double Free Weakness



Software Security

provide the users of these resources
the ability to quickly identify the par-
ticular weaknesses that are targeted by
various types of attacks and to better
understand the context of individual
weaknesses through understanding
how they would typically be targeted
for exploitation. In combination, these
two resources offer significantly higher
value than either does on its own.

• Bi-directional mapping between CWEs
and coding rules, such as those
deployed as part of the DHS NCSD
BuildSecurityIn Web site [10], would be
used by tools and in manual code
inspections to identify common weak-
nesses in software.

• Incorporating CWE into the DHS
NCSD SwA common body of knowl-
edge, hosted on the BuildSecurityIn
Web site.

• Leveraging of the OMG technologies to
articulate formal, machine-parsable def-
initions of the CWEs to support analy-
sis of applications within the OMG
standards-based tools and models.

Finally, there are two follow-on opportu-
nities that are currently not being pursued
but could provide significant added value
to the software security industry:
• Expansion of the coding rules catalog

on the DHS BuildSecurityIn Web site to
include full mapping against the CWEs
for all relevant technical domains.

• Identification and definition of specif-
ic domains (language, platform, func-
tionality, etc.) and relevant protection
profiles based on coverage of CWEs.
These domains and profiles could pro-
vide a valuable tool to security testing
strategy and planning efforts.

Conclusion
This work is already helping to shape and
mature the code security assessment
industry, and it promises to dramatically
accelerate the use and utility of automa-
tion-based assessment capabilities for
organizations and the software systems
they acquire, develop, and use.u

Acknowledgments
The work contained in this paper was fund-
ed by DHS NCSD and is based on the
efforts of a large number of individuals, but
special thanks is made for the contributions
of Steve Christey, Janis Kenderdine, Conor
Harris, David Harris, and Sean Barnum.

References
1. NIST. “The Software Assurance Met-

rics and Tool Evaluation (SAMATE)
Project.” Jan. 2007 <http://samate.
nist.gov>.

2. OMG. Object Management Group.
Jan. 2007 <http://swa.omg.org>.

3. Concurrent Technologies Corpora-
tion. The Code Assessment Method-
ology Project. Jan. 2007 <www.ctc.com>.

4. MITRE Corporation. The Common
Vulnerabilities and Exposures (CVE)
Initiative. Jan. 2007 <http://cve.
mitre.org>.

5. NIST. National Vulnerability Database.
Jan. 2007 <http://nvd.nist.gov>.

6. MITRE Corporation. The Preliminary
List of Vulnerability Examples for
Researchers. Dec. 2006 <http://cve.
mitre.org/docs/plover/>.

7. MITRE Corporation. The Common
Weakness Enumeration Initiative
<http://cwe.mitre.org>.

8. Viega, J. The CLASP Application
Security Process. Secure Software, Inc.,
2005 <www.securesoftware.com>.

9. McGraw, G., B. Chess, and K. Tsipen-
yuk. “Seven Pernicious Kingdoms: A
Taxonomy of Software Security Err-
ors.” NIST Workshop on Software Se-
curity Assurance Tools, Techniques, and
Metrics, Long Beach, CA, Nov. 2005.

10. DHS NCSD. BuildSecurityIn. Dec.
2006 <http://buildsecurityin.us-cert.
gov>.

8 CROSSTALK The Journal of Defense Software Engineering March 2007

About the Author

Robert A. Martin is a
principal engineer in
MITRE’s Information
and Computing Technol-
ogies Division. For the
past seven years, his

efforts have been focused on the inter-
play of risk management, cyber security
standards, critical infrastructure protec-
tion, and the use of software-based tech-
nologies and services. Martin is a mem-
ber of the Association for Computing
Machinery, Armed Forces Communica-
tions and Electronics Association,
Institute of Electrical and Electronics
Engineers (IEEE), and the IEEE
Computer Society. He has a bachelor’s
degree and a master’s degree in electrical
engineering from Rensselaer Polytechnic
Institute, and a master’s of business
degree from Babson College.

MITRE Corporation
202 Burlington RD
Bedford, MA 01730-1420
Phone: (781) 271-3001
Fax: (781) 271-8500
E-mail: ramartin@mitre.org

COMING EVENTS

April 3-5
SAS Expo 2007
Sea-Air-Space

Washington D.C.
www.sasexpo.org/2007

April 4-5
EIG 2007

Excellence in Government 2007
Washington D.C.

www2.govexec.com/EIG2007

April 4-6
ICCSA 2007

5th International Conference on
Computer Science and Applications

San Diego, CA
www.conferencehome.com/iccsa.htm

April 22-26
2nd Annual Functional Sizing Summit

Vancouver, BC, Canada
www.ifpug.org/conferences

/annual.htm

April 22-26
North American CACS

North American Computer, Audit,
Control and Security Conference

Grapevine, TX
www.isaca.org

April 23-26
NMDAS 2007

The 2007 Nano Materials for Defense
Application Symposium

San Diego, CA
www.usasymposium.com

June 18-21
2007 Systems and Software 

Technology Conference 

Tampa Bay, FL
www.sstc-online.org

COMING EVENTS: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. E-mail announce-
ments to nicole.kentta@hill.af.mil.



Today’s dependency on networked soft-
ware systems has been matched by an

increase in the number of attacks against
governments, corporations, educational
institutions, and individuals. These attacks
result in the loss and compromise of sen-
sitive data, system damage, lost productiv-
ity, and financial loss. To address this
growing threat, the introduction of soft-
ware vulnerabilities during development
and ongoing maintenance must be signifi-
cantly reduced, if not eliminated.

It is no secret that common, everyday
software defects cause the majority of
software vulnerabilities. Poor develop-
ment practices cause numerous delivered
defects, some of which can lead to vul-
nerabilities. Software developers repair
vulnerabilities as they are reported; cycles
of patch and install follow. However,
there are so many patches to install that
system administrators cannot keep up
with the job. Often the attackers analyze
the patches for clues to attacking
unpatched systems. Sometimes the patch-
es themselves contain security defects.
The patch-oriented strategy of respond-
ing to security defects is not working.
There is need for a prevention and early
security defect-removal strategy.

Software Vulnerabilities
One example of a relatively common pro-
gramming error that can lead to software
vulnerabilities involves the use of format-
ted output functions in C and C++, as
well as some other common languages.
For example, a malicious user is able to
manipulate the string variable named out-
put in the following statement:

printf(output);

The malicious user will be able to exploit
this vulnerability to execute code with the
permissions of the vulnerable process [1].
This is largely a consequence of the little
known %n conversion specifier that
instructs the formatted output function to

write an integer value to a specified address.
The error is the passing of untrusted data
as a format string. The solution is as easy as
providing a static format specification:

printf(“%s”, output);

Or, even more succinctly, using the puts()
function so that no formatting is neces-
sary or possible, as shown in the following
example:

puts(output);

Format output functions can also lead to
vulnerabilities in other languages as is
shown in the following examples:
• Perl: could alter values, the conse-

quence of which depends on how the
value is used.

• PHP: log avoidance (fails quietly).
• Python: information leak or denial-of-

service (DoS) attacks.

• Ruby: DoS attacks.
As long as developers are unaware of

the security risks, it is likely that common
programming errors, such as allowing
untrusted data to be incorporated into a
format string, will result in software vul-
nerabilities being operationally deployed.

If root causes of software vulnerabili-
ties are not addressed, software vulnerabil-
ity reports are likely to continue on the
upward trend as shown in Figure 1. Nearly
4,000 vulnerabilities were reported in the
first half of 2006 alone.

International Standardization
Efforts
Inherent weaknesses in programming
languages such as C, C++, Fortran, Ada,
and COBOL are a contributing factor to
software vulnerabilities. Many of these
languages were specified in the days when
ubiquitous networking language designers

Secure Coding Standards

Inherent weaknesses in programming languages contribute to software vulnerabilities. Increasingly, organizations are produc-
ing standards to improve software security. Current efforts to develop software security standards are surveyed, and two such
efforts are described in detail. An international standards group is writing a document providing guidance to users of pro-
gramming languages on how to avoid the vulnerabilities that exist in the programming language selected for a particular pro-
ject. Carnegie Mellon University’s (CMU’s) Computer Emergency Response Team (CERT) is developing secure coding prac-
tices for the C and C++ programming languages1.

March 2007 www.stsc.hill.af.mil 9

James W. Moore
The MITRE Corporation

Robert C. Seacord
Software Engineering Institute

0

250

500

750

1000

1250

1500

1750

2000

F Y 2004

Q 2

F Y 2004

Q 3

F Y 2004

Q 4

F Y 2005

Q 1

F Y 2005

Q 2

F Y 2005

Q 3

F Y 2005

Q 4

F Y 2006

Q 1

F Y 2006

Q 2

F Y 2006

Q 3TD

All Reports

Direct Reports

Figure 1: Vulnerabilities Reported to CERT/Coordination Center (CC)



Software Security

were not greatly concerned with the
prospect of attacks by external parties.
Many languages were predominately
designed for flexibility, ease of use, and
performance. As a result, many of the lan-
guages, in effect, invite coders to use inse-
cure coding constructs. One result has
been the growth of usage guidelines that
inform and encourage coders to use secure
alternatives to easily attacked constructs.
Another result is the development of
recent projects by standards bodies to pro-
vide secure alternatives.

Increasingly, standards organizations
are working on ways to improve software
security. Accomplishing change through
standards organizations can be harder than
accomplishing change at any other organi-
zational level, but when successful, can
have a broader impact across the industry.
The international standards bodies –
International Organization for Standardi-
zation (ISO) and International Electro-
technical Commission (IEC) – are working
on a number of projects that affect soft-
ware security:
• The ISO Technical Management Board

(TMB) performs strategic planning and
coordination for ISO. Currently, its
advisory group on security is coordi-
nating standards efforts. The ISO
TMB working group on risk manage-
ment is providing overall guidance for
risk management.

• ISO/IEC Joint Technical Committee
(JTC) 1/Standards Committee (SC) 27
is responsible for computing security.

Many of its projects concern methods
for protecting deployed software
<www.ni.din.de/sixcms/detail.php?
id=10172>.

• ISO/IEC JTC 1/SC 7 has the respon-
sibility for systems and software engi-
neering. Its standards provide a base-
line for the responsible practice of sys-
tems and software engineering, includ-
ing software assurance <www.jtc1-sc7.
org/>.

• ISO/IEC JTC 1/SC 22 has the respon-
sibility for programming languages,
including their effect on improved soft-
ware security <www.open-std.org/jtc1/
sc22/>. For example, SC 22/ Working
Group (WG) 14, the group that is
responsible for the standardization of
the C programming language, is devel-
oping a technical report on C library
functions that incorporate bounds
checking to mitigate against buffer over-
flow vulnerabilities [2].

Figure 2 illustrates the relationship of the
relevant standards committees.

Other Working Group
Vulnerabilities (OWGV)
All programming languages have con-
structs that are imperfectly defined, imple-
mentation-dependent, or difficult to use
correctly. As a result, software programs
can execute differently than intended by
the writer. In some cases, these vulnerabil-
ities can be exploited by an attacker to
compromise the safety, security, and priva-
cy of a system.

A new SC 22 group, the OWGV, is
addressing the issue of programming lan-
guage vulnerabilities. The goal of the
OWGV <http://aitc.aitcnet.org/isai/>, as
described in the proposal for a new work
item, is the following:

… to prepare comparative guid-
ance spanning a large number of
programming languages, so that
application developers will be bet-
ter informed regarding the vulnera-
bilities inherent to candidate lan-
guages and the costs of avoiding
such vulnerabilities. An additional
benefit is that developers will be
better prepared to select tooling to
assist in the evaluation and avoid-
ance of vulnerabilities. [3]

ISO/IEC JTC 1/SC 22/OWGV is
writing a document containing guidance to
users of programming languages on how
to avoid the vulnerabilities that exist in the
programming language selected for a par-
ticular project. Implicitly, the guidance may
also be helpful in selecting a language for a
particular project. Finally, the report may
be helpful in choosing tools to assist in
evaluating and avoiding vulnerabilities.
The tentative schedule calls for publishing
this document in January of 2009.

Although work has just begun, it is
anticipated that the group’s technical
report will provide comparative guidance
covering a wide variety of languages.
Readers would be able to study the vulner-
abilities of particular languages they
already know well; in addition, readers
would be able to apply their existing
knowledge of vulnerabilities in the context
of programming languages that are unfa-
miliar.

Currently, the group enjoys the partici-
pation of representatives from many of
the important programming languages and
hopes to attract more. The group plans to
obtain information about vulnerabilities
and their treatment from initiatives like the
common vulnerabilities and exposures
database <http://cve.mitre.org> and the
CERT secure coding initiative.

CERT Secure Coding
Initiative
Additional efforts in developing secure
coding standards are originating outside of
formal standards organizations. CMU’s
Software Engineering Institute (SEI)
CERT program has deployed a secure
coding Web site at <www.securecoding.
cert.org> to cooperate with the software
development community in codifying a

10 CROSSTALK The Journal of Defense Software Engineering March 2007

0

250

500

750

1000

1250

1500

1750

2000

F Y 2004

Q 2

F Y 2004

Q 3

F Y 2004

Q 4

F Y 2005

Q 1

F Y 2005

Q 2

F Y 2005

Q 3

F Y 2005

Q 4

F Y 2006

Q 1

F Y 2006

Q 2

F Y 2006

Q 3TD

All Reports

Direct Reports

Jo in t

Techn ica l

Comm ittee  1

Other

Techn ical

Comm ittees

Other

Techn ical

Comm ittees

T echn ica l

M an ag em en t

Bo a rd

Sub-

Committee 

7

Sub -

Committee 

27

Sub -

Committee 

22

O th e r S u b -

C o m m it te e s

ISO IEC

Advisory Group on

Security

Workin

Risk Management

Technical

Management

Board

ISO IEC

Advisory Group

on Security

WG on

Risk Management

Other

Technical

Committees

Joint

Technical

Committee 1

Other

Technical

Committees

Information Technology

Sub-

Committee

7

Sub-

Committee

22

Sub-

Committee

27

Software and

Systems

Engineering

Programming

Languages

IT Security

Other

Sub-

Committees

Figure 2: Relevant International Standard Committees



Secure Coding Standards

practical and effective set of secure coding
practices for popular programming lan-
guages. These coding practices can be
used by software developers to eliminate
vulnerabilities before software is opera-
tionally deployed.

CERT’s initial efforts are focused on
the development of secure coding prac-
tices for the C and C++ programming
languages. C and C++ were selected
because a large percentage of critical
infrastructure is developed and main-
tained using these programming lan-
guages. C and C++ are popular and viable
languages, although they have characteris-
tics that make them prone to security
flaws. The CERT C programming lan-
guage secure coding standard is scheduled
for publication in January 2008 while the
C++ standard is not scheduled for publi-
cation until January 2009. However, work-
ing drafts for both documents are avail-
able on the secure coding Web site.

There are numerous available sources,
both online and in print, containing cod-
ing guidelines, best practices, suggestions,
tips, and industry-specific standards such
as the Motor Industry Software Reliability
Association (MISRA) Guidelines for the
use of the C language in critical systems
[4]. However, none of these sources pro-
vide a prescriptive set of secure coding
standards that can be uniformly applied in
the development of a software system.
This conclusion is reinforced by the
Secure Software Assurance Common
Body of Knowledge [5], published by the
DHS, which laments the lack of public stan-
dards as such for secure programming.

The secure coding practices proposed
by CERT are based on standard language
specifications as defined by official stan-
dards organizations (such as ISO/IEC) or
by de facto standard language specifications.
CERT is not an internationally recognized
standards body, but it is working with orga-
nizations such as ISO/IEC to advance the
state of the practice in secure coding. The
ISO/IEC JTC1/SC22 WG14 international
standardization working group for the pro-
gramming language C, for example, has
offered to provide direction in the develop-
ment of the C language secure coding
practices and to review and comment on
drafts of the informal CERT standard.

The goal of the CERT work is to
encourage organizations to develop their
own coding standards to be applied on all of
their projects. The organizational coding
standard would codify a set of rules that are
necessary (but not sufficient) to ensure the
security of software systems developed in
the respective programming languages [6].

A secure coding standard consists of

rules and recommendations. Coding practices
are defined to be rules when all of the fol-
lowing conditions are met:
1. Violation of the coding practice will

result in a security flaw that may result
in an exploitable vulnerability.

2. An enumerable set of exceptional condi-
tions (or no such conditions) in which
violating the coding practice is necessary
to ensure the correct behavior for the
program. One example of a rule with an
exception condition is to ensure that integer
operations do not result in an overflow. While
overflow generally indicates an error
condition, if the code was designed
assuming module behavior then it is nec-
essary to provide an exception for over-
flows resulting from this behavior.

3. Conformance to the coding practice
can be verified.

Rules must be followed to claim compli-
ance with a standard unless an exceptional
condition exists. If an exceptional condition
is claimed, the exception must correspond
to a predefined exceptional condition and
the application of this exception must be
documented in the source code.

Recommendations are guidelines or
suggestions. Coding practices are defined
to be recommendations when all of the
following conditions are met:
1. Application of the coding practice is

likely to improve system security.
2. One or more of the requirements nec-

essary for a coding practice to be con-
sidered a rule cannot be met.

Relationships Between Efforts
CERT representatives participating in the
ISO/IEC working group on guidance for
avoiding vulnerabilities through language
use are coordinating their efforts. While
the ISO/IEC group is working on provid-
ing language-independent guidance, the
CERT effort is working on developing
and consolidating the language-specific
guidance that provides the foundations
for the ambitious goals of OWGV.

CERT’s efforts in identifying and doc-
umenting secure coding practices for C
and C++ will contribute to the standard-
ization of these practices and advance the
goals of the OWGV, while the OWGV
effort provides a framework for CERT
language-specific efforts.

Summary
Efforts have now begun to codify secure
coding practices both at the international
and organizational levels. The success of
the secure coding standards depends on
the active involvement of members of the
software development communities. To
become involved in the OWGV group,
visit <www.aitcnet.org/isai/> or contact
the convener. To contribute to the CERT
secure coding standards, go to  <www.sec
urecoding.cert.org> and review or com-
ment on the existing content or submit
new ideas for secure coding practices.u

Acknowledgements
Thanks to Hal Burch for his information
on format string vulnerabilities in lan-
guages other than C and C++ and to John
Benito for his assistance in developing this
article. Thanks also to reviewers Pamela
Curtis, Chad Dougherty, and Fred Long.

References
1. Seacord, Robert C. Secure Coding in C

and C++. Boston, MA: Addison-
Wesley, 2005 <www.cert.org/books/
secure-coding>.

2. ISO/IEC JTC1 SC22 WG14. Infor-
mation Technology – Programming
Languages, Their Environments and
System Software Interfaces – Exten-
sions to the C Library, – Part I:
Bounds- Checking Interfaces. ISO/
IEC TR 24731. Geneva, Switzerland:
ISO, 2006  <www.open-std.orgjtc1/sc
22/wg14/www/docs/n1146.pdf>.

3. ISO/IEC JTC 1/SC 22. New Work
Item Proposal for Guidance to
Avoiding Vulnerabilities in Program-
ming Languages Through Language
Selection and Use. 2005 <www.open
-std.org/jtc1/sc22/open/n3913.htm>.

4. MIRA Limited. MISRA C: 2004
Guidelines for the Use of the C Lan-

March 2007 www.stsc.hill.af.mil 11

“The goal of the CERT
work is to encourage

organizations to develop
their own coding

standards to be applied
on all of their projects.

The organizational
coding standard would ...

ensure the security of
software systems
developed in the

respective programming
languages.”



Software Security

guage in Critical Systems. Warwick-
shire, UK: MIRA Limited, 2004.

5. Redwine, Jr. Samuel T., Ed. Software
Assurance: A Guide to the Common
Body of Knowledge to Produce,
Acquire, and Sustain Secure Software.
Draft version 1.05. Aug. 2006.

6. Seacord, Robert C. “Secure Coding
Standards.” Static Analysis Summit.
NIST Special Publication 500-262.
Gaithersburg, MD: NIST, 2006. 14-16
<http://samate.nist.gov/docs/NIST_
Special_Publication_500-262.pdf>.

Note
1. The nomenclature for international

standards groups represents a hierarchi-
cal organization. The international
standards committee for information
technology is a JTC of two internation-
al standards-makers, the ISO and the
IEC, and is therefore called ISO/IEC
JTC 1. It subdivides its work among
numbered subcommittees: SC 7 deals
with software and systems engineering,
SC 22 with programming languages,
and SC 27 with computing security. SCs
subdivide their work among numbered
or lettered WG and OWGs.

12 CROSSTALK The Journal of Defense Software Engineering March 2007

About the Authors

Robert C. Seacord is a
senior vulnerability ana-
lyst at the CERT/CC at
the SEI. He is the author
of Secure Coding in C and
C++ and co-author of

Building Systems from Commercial
Components and Modernizing Legacy Systems,
as well as more than 50 papers on soft-
ware security, component-based soft-
ware engineering, Web-based system
design, legacy-system modernization,
component repositories and search
engines, and user interface design and
development. Seacord also has worked
at the X Consortium where he devel-
oped and maintained code for the
Common Desktop Environment and
the X Window System.

SEI
Pittsburgh, PA 15213
Phone: (412) 268-7608
Fax: (412) 268-6989
E-mail: rcs@cert.org

James W. Moore is a 35-
year veteran of software
engineering in IBM and,
now, the MITRE Corpo-
ration. He is an executive
editor of the IEEE

Computer Society’s Guide to the Software
Engineering Body of Knowledge and a mem-
ber of the editorial board of the
Encyclopedia of Software Engineering. He
participates in international standardiza-
tion related to software and systems
engineering as well as programming lan-
guages. Moore is a fellow of the IEEE
and a charter member of the IEEE
Computer Society’s Golden Core.

MITRE Corporation 
7515 Colshire DR
H505
McLean,VA 22102-7508
Phone: (703) 983-7396
Fax: (703) 983-1279
E-mail: moorej@mitre.org

BuildSecurityIn
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
As part of the Software Assurance program, Build Security In
(BSI) is a project of the Strategic Initiatives Branch of the
National Cyber Security Division (NCSD) of the Department
of Homeland Security. The Software Engineering Institute
(SEI) was engaged by the NCSD to provide support in the
Process and Technology focus areas of this initiative. The SEI
team and other contributors develop and collect software assur-
ance and software security information that helps software
developers, architects, and security practitioners to create secure
systems. BSI content is based on the principle that software
security is fundamentally a software engineering problem and
must be addressed in a systematic way throughout the software
development life cycle. BSI contains and links to a broad range
of best practices, tools, guidelines, rules, principles, and other
knowledge that can be used to build security into software in
every phase of its development.

National Institute of Standards and
Technology: Computer Security Resource
Center
www.csrc.nist.gov
The Computer Security Division – (893) is one of eight divi-
sions within National Institute of Standards and Technology’s
(NIST) Information Technology Laboratory. The mission of
NIST’s Computer Security Division is to improve information
systems security by: raising awareness of information technolo-
gy (IT) risks, vulnerabilities and protection requirements, par-

ticularly for new and emerging technologies; researching, study-
ing, and advising agencies of IT vulnerabilities and devising
techniques for the cost-effective security and privacy of sensitive
federal systems; developing standards, metrics, tests and valida-
tion programs; and developing guidance to increase secure IT
planning, implementation, management and operation.

Computer Emergency Readiness Team
Coordination Center
www.cert.org
The Computer Emergency Readiness Team Coordination
Center is a center of Internet security expertise, located at the
Software Engineering Institute (a federally funded research and
development center operated by Carnegie Mellon University).
The team studies Internet security vulnerabilities, researches
long-term changes in networked systems, and develops infor-
mation and training to help you improve security.

Committee on National Security Systems
www.cnss.gov
Under Executive Order 13231 of October 16, 2001, Critical
Infrastructure Protection in the Information Age, the President
designated the National Security Telecommunications and
Information Systems Security Committee as the Committee on
National Security Systems (CNSS). The CNSS provides a
forum for the discussion of policy issues, sets national policy,
and promulgates direction, operational procedures, and guid-
ance for the security of national security systems.

WEB SITES



CC for IT security evaluation [1] and its
forerunners have been successfully

providing independent assurance of IT
products since the 1980s. It has evolved as
a framework for undertaking the formal
independent evaluation of IT security
products at either government or com-
mercial evaluation facilities. The outcome
of this process will be certification of an
IT security product at a given Evaluation
Assurance Level (EAL) as detailed in
Table 1. The higher the EAL the more rig-
orous are the development and evaluation
processes and the greater the confidence
that the product can be trusted to perform
the security functions the vendor claims,
once successfully evaluated and certified.

By virtue of both the CC Recognition
Agreement (CCRA) and the issue of CC
as an International Standards Organiza-
tion (ISO) standard (ISO 15408), CC cer-
tificates are recognized in many countries
across the world.

A measure of global CC activity is
demonstrated by the number of CC cer-
tificates issued. A quick check to date at
<www.commoncriteriaportal.org> [2]
reveals the certified product counts by cat-
egory given in Table 2. Protection Profiles in
this table refers to certificates issued to an
abstract class of security functionality
rather than an actual Product Certificate.
Products are often themselves certified
against a particular Protection Profile. One
example of a class of security functionali-
ty would be role-based access control.

However, can CC be used as a frame-
work for genesis of further assurance
methods? From experiences in the UK,
we believe this is the case; this is the main
thesis of this article.

This article does not provide further
detail on CC. For those unfamiliar with it
and interested in further understanding,
the full CC framework is published online
at [2].

Why Is Independent
Assurance So Important?
The need for IT product certification ini-
tially rose with a need for increased confi-
dence and standardization in security
products and operating systems deployed
in the military domains. Safety and securi-
ty requirements dictated that it was neither
prudent to rely on manufacturer claims
nor to allow a series of different propri-
etary approaches to develop functions that
did not match the needs of the end user.

The natural response to this is to
establish a framework of independent,
functional specification and product veri-
fication. In this way those security func-
tions can be validated as they are pro-
duced against a clear set of standardized
requirements. Evaluators will verify and
validate the design documents of the ven-

dors, repeat tests using a defined sampling
strategy (to ensure they produce the same
results), attempt to expose flaws or vul-
nerabilities, and ensure the production
process follows the prescribed practices
and disciplines. This greatly increases the
confidence in the finished product.

What Are Its Limitations?
The immediate fact to note from the

How a Variety of Information Assurance Methods
Delivers Software Security in the United Kingdom

Many in the software engineering world are already aware of the Common Criteria (CC) and the important role it
plays providing confidence in the reliability of Information Technology (IT) product security claims through an inde-
pendent evaluation and certification process. In the United Kingdom (UK), the CC philosophy has been adapted into
a variety of pragmatic assurance techniques not just for single vendor solutions but for complete systems, sub-systems,
network technologies, security architectures, and even managed service provision. How the general framework of CC
can be adapted to provide assurance of security functions in software should be of interest to any person designing an
assurance process for software security. 

Kevin Sloan and Mike Ormerod
Echelon Consulting Ltd.1

March 2007 www.stsc.hill.af.mil 13

Table 1: CC Evaluation Assurance Levels

15 1

65 8

23 0

20 5

20 3

7 4

136 22

18 1

37 5

49 5

10 25

400 79

Inadequate assuranceEAL 0

Functionally testedEAL 1

Structurally testedEAL 2

Methodically tested and checkedEAL 3

Methodically designed, tested, and reviewedEAL 4

Semi-formally designed and testedEAL 5

Semi-formally verified, designed, and testedEAL 6

Formally verified, designed, and testedEAL 7

Product Category Product

Certificates

Protection

Profiles

Access control technology

Boundary protection technology

Data protection systems

Database systems

Digital signature technology

(Misuse) Detection technology

Integrated circuit and smartcard technology

(Cryptographic) Key management systems

Networking technology

Operating systems

Others

Total

Table 2: CC Certificates by Product Category

Table 1: CC Evaluation Assurance Levels

15

65

23

20

20

7

136 2

18

37

49

10 2

400 7

Inadequate assuranceEAL 0

Functionally testedEAL 1

Structurally testedEAL 2

Methodically tested and checkedEAL 3

Methodically designed, tested, and reviewedEAL 4

Semi-formally designed and testedEAL 5

Semi-formally verified, designed, and testedEAL 6

Formally verified, designed, and testedEAL 7

Product Category Product

Certificates

Protectio

Profiles

Access control technology

Boundary protection technology

Data protection systems

Database systems

Digital signature technology

(Misuse) Detection technology

Integrated circuit and smartcard technology

(Cryptographic) Key management systems

Networking technology

Operating systems

Others

Total

Table 1: CC Evaluation Assurance Levels



Software Security

count up of certified products given earli-
er (Table 2) is that most product categories
are the direct components of security
architectures (e.g. boundary protection),
relatively few are generic IT products (e.g.
operating systems and databases). This
already signifies CC as a component and
not a solution-focused method; a certified
product is no use in isolation. Also, neither
does CC meet the need for end to end
assurance of network architectures and the
overall assurance of business applications.
Additional methods are needed to cover
assurance of these solutions.

Another statistic to note is how the
largest category by far (integrated circuits
and smartcards, 34 percent of all certifica-
tions) are the most self-contained. These
are ideal for testing from the comfort of a
laboratory environment and are well
defined for the rigor of CC. How do you
assure a deployed solution comprising
many products and which is infinitely
more complex?

The main limitations of the classical
CC approach can be summarized as the
following:
• Practicality of evaluation reduces with

complexity.
• Time, cost, and probability of an

unsuccessful outcome increases with
complexity and level of assurance
required.

• It is impossible to define complex sys-
tems to the depth necessary to subject
them to high assurance levels.

• It is difficult to apply to a collection of
commercial off-the-shelf products due
to the complexity introduced by com-
bined permutation of configurations
and competing proprietary interests
(version 3.1 of CC now adds the con-
cept of composition assurance profile
to enable this form of evaluation).

• It is a product-focused credential; it
cannot assure particular installations of
that product outside of the laboratory
environment or assure an overall ser-
vice delivery that includes the product.

• The specialist nature of the products
means it often is difficult for vendors
to recover the cost of evaluation
through volume; evaluated versions
can have a high-cost premium.

• Government sectors know how to
apply assured products by virtue of
their security policies, but industry has
no benchmark to apply them. In this
environment, it is hard to build a busi-
ness case for them.

• Complex evaluations take a long time;

often, the certified version may be a
product generation behind the latest
version on the shelf once it becomes
certified.

• Evaluated configurations are often
limited in scope, not matching real-
world implementations.

• Evaluation is not perfect; there will
still be security patches.

Alternative Approaches
What other approaches are there to assure
the security of delivered solutions? There
are alternatives for providing confidence
in software production processes, such as
the Capability Maturity Model Integration
(CMMI®) [4]. There are also holistic con-
trol-based approaches to information
security that can be applied at the organi-
zation and business process level includ-
ing ISO27001/ISO17799 [5,6] and
Control Objectives for IT (COBIT) [7].

At the other extreme, there are both
tools and experts available to provide vul-
nerability assessments and penetration
tests of deployed solutions. The tried and
trusted method is also still abundant in
industry in which products are only incor-
porated after extensive proving within a
customer environment.

Some product groups also have spe-
cialist watchdogs that provide constantly
updated information on product quality.
For instance, Virus Bulletin [8] provides a
constantly updated profile of the perfor-
mance of all anti-virus products on the
market. ICSA labs [9] provides a subscrip-
tion-based, broad ranging commercial
product security list that was tested, and
using their own proprietary method, West
Coast Labs have established a proprietary
independent product certification scheme
(Check-Mark) [10].

However, none of the alternatives
offers the depth and specificity of the CC
process. The obvious approach is to cus-
tomize the CC to the alternative needs to
derive a range of information assurance
(IA) techniques that are tailored to fit the
specific assurance needs of each circum-
stance. CC especially lends itself to the
production of derivative methods due to
its modular nature and structured philoso-
phy; it can be used as a toolbox to provide
derivative assurance methods.

What’s Happened in the UK
This is exactly what has happened in the
UK: The Communications-Electronics
Security Group (CESG) is the UK’s
national technical security authority. It has
led initiatives to derive a selection of IA
methodologies driven by customer
demand (inevitably clients from the UK

government sector). It is the main driving
force behind all UK government technical
security initiatives.

The remainder of this article is dedi-
cated to this range of methods beyond the
conventional CC evaluation process.
These include the following:
• System level evaluations (SYS) [11].
• Fast-track assessments (FTA) [12].
• IT security health checks (CHECK)

[13].
• CESG Assisted Products Scheme

(CAPS) [14].
• Central Sponsor for Information

Assurance (CSIA) Claims Tested Mark
(CCTM) [15].

The SYS, FTA, and CHECK methods can
augment laboratory based verification
with assessment at the point of installa-
tion for a particular project. Also, the UK
now has the CCTM scheme to test the
manufacturer security claims of shrink
wrapped products and services, using a
single-pass, low-cost method; this proves
suitable for assessing products and ser-
vices which have so far eluded formal
evaluation due to their polymorphic
nature (including anti-virus software and
content filters). It also moves away from
open ended and unaffordable iterative
approaches that risk never having a suc-
cessful outcome to fixed assessment pro-
jects with known milestones, costs, and
end products.

The Key Players
Apart from CESG, referred to above, the
other UK organizations that play a key
part in delivering IA requirements to the
UK Government sector include the fol-
lowing:
• Cabinet Office. The Cabinet Office is

the source of most political initiatives
that drive UK public sector interest in
information systems and IT. For
instance, the UK has a requirement to
provide all government services to the
citizen online by the end of 2007. The
Cabinet Office also owns UK govern-
ment security policy.

• CSIA. CSIA is part of the Cabinet
Office and takes a pan-civil govern-
ment responsibility for accreditation of
public sector information systems and
IT. This remit extends from all central
government departments through to
local authorities and government agen-
cies.

• National Infrastructure Security
Coordination Center (NISCC).
NISCC performs in the UK as part of
the functions of homeland security.
NISCC is part of the wider security
services for ensuring the security and

14 CROSSTALK The Journal of Defense Software Engineering March 2007

® Capability Maturity Model and CMMI are registered in
the U.S. Patent and Trademark Office by Carnegie
Mellon University.



How a Variety of Information Assurance Methods Delivers Software Security in the United Kingdom

March 2007 www.stsc.hill.af.mil 15

availability of the critical national
infrastructure. This extends beyond
government to privatized utilities and
critical services. NISCC also promul-
gates technical security advice and is
also the central point for Unified
Incident, Response and Alerting
Scheme which is the UK government’s
Computer Emergency Response Team
(CERT).

• Ministry of Defense (MOD). MOD
is the largest UK consumer and
investor in IA services and is, there-
fore, the key stakeholder. Naturally,
they need to apply full rigor of formal
processes to the assurance of systems
and have helped to shape the methods
in use today.

• Department of Trade and Industry
(DTI). DTI has a role in advising
industry on information security mat-
ters, especially for government con-
tractors. It has been a key player in the
past in promotion of adoption of
standards in use by government to the
commercial sector and in the standard-
ization at both the national and inter-
national levels.

• UK Accreditation Service (UKAS).
UKAS oversees all UK government
sponsored certification services in the
UK including the certificate or testing
laboratories.

All of the above have had important roles
in definition and practice of the standards
and methods discussed in this article.

SYS
SYS is a clear CC derivative developed by
CESG to meet MOD requirements for
assurance of whole solutions. Typical
MOD IT systems incorporate multiple
products from multiple vendors and may
extend from a system deployed in a single
data center to an enterprise solution cov-
ering many sites.

Modeled along the assurance levels,
the equivalent SYS2 to SYS4 levels pro-
vide a measure of equivalence to EAL2 to
EAL4. It excludes those elements of CC
that are specific to individual products and
vendors and focuses on system level and
end to end testing. It was formalized as a
UK IT Security Evaluation Criteria
(ITSEC) method in 2002.

It was the first method to reduce the
iterative approach of CC and the pure
pass/fail outcome to a more risk based
approach in which the test report provides
information on residual flaws and vulner-
abilities; it is then for the system accredi-
tor to accept the overall solution as is, to
call for remedy in specific areas, or to
build in compensating controls. This pro-

duces an approach that is more pre-
dictable in terms of project costs and
timescales.

FTA
CESG, on realizing the benefits of the
system-level approach and its broader
applicability to all UK government pro-
jects then embarked on definition of a
more generally usable fast track scheme
that could be applied to specific products
and for deployment of specific compo-
nents. It was launched as a CESG IA ser-
vice in 2001.

Here the emphasis is for an entirely
predictable time to evaluate and for the
cost to be known at the outset. Again the
focus is on deployment of the product in
a specific project environment, which can
be a benefit over the more generalist
approach of CC.

It is designed to be at lower cost and
therefore more within the budgets of the
smaller government departments.

The output is an assessment report
rather than a certified product; it is devel-
oped with the intention that it provides
assurance that the product is fit for the pur-
pose in the sponsor’s desired deployment.

CHECK
The CHECK scheme is not strictly a
derivative of CC. CHECK is another ser-
vice from the CESG stable that has been
operating since 1998. This scheme focus-
es on providing UK government trained
ethical penetration testing personnel for
undertaking penetration testing and vul-
nerability testing on deployed UK govern-
ment networks and solutions. These test
personnel undergo a stringent annual
assault course examination at CESG to
ensure their skills remain current.
Companies that maintain the test person-

nel are given a green light status by CESG
which allows them to tender for CHECK
contracts.

The CHECK service is mandated for
all UK government projects that involve
the connection of sensitive UK govern-
ment information systems to the Internet.
An important recent development of this
scheme (which originally focused on net-
work testing) is a new application testing
service that focuses on assessment of web
enabled multi-tier applications and the
vulnerabilities that can be exposed purely
by the interaction of multiple software
packages, how they are configured, and
the presence of underlying bespoke appli-
cation code.

CAPS
The CAPS scheme is the UK equivalent of
the US Federal Information Processing
Standard (FIPS)-140 encryption product
evaluation standard. CAPS and FIPS-140
are formal means of evaluating crypto-
graphic hardware and software products
in a similar way to which CC evaluates IT
products.

Cryptography is typically excluded
from CC evaluations due to national sen-
sitivities and import/export laws: cryptog-
raphy is judged as having a dual use (mili-
tary) application and therefore useful to
rogue administrations.

UK government departments are
required to protect UK classified informa-
tion with CAPS approved products.

UK vendors of encryption technology
enter into a partnership with CESG to
engineer UK specific algorithms into their
products. Once approved, these products
become part of the UK catalogue of
approved encryption products.

CSIA CCTM
CCTM is the latest scheme targeted with
the widest possible applicability. This has
been championed by the CSIA, with tech-
nical assistance of CESG. It is an entry-
level assurance method; we have heard it
described as what EAL1 should have been.

It is intended to be an affordable cre-
dential for all forms of security products
and services. It is a single pass method
that concentrates on validating vendor
product functional security claims. The
scheme was launched with pilot assess-
ment in 2005 and is now fully in effect.
Twelve security products and one service
have so far been assessed under the
scheme and awarded the mark. The single
service assessed so far is the Messagelabs
e-mail scanning service which exists
between the UK government secure
intranet and the Internet.

“CC especially lends
itself to the production of
derivative methods due
to its modular nature

and structured
philosophy; it can be
used as a toolbox to

provide derivative
assurance methods.”



Software Security

The process is a simple single-pass
process with limited functional testing that
starts with a vendor provided IA Claims
Document that specifies the security func-
tionality of the product or service to be
assessed.

Designed to be fast and at very low
cost, it provides a baseline UK govern-
ment approved badge. All new security
products and services will need this as the
minimum credential for inclusion in UK
government procurement catalogues.

Applicability of the Approaches
The coverage of the UK methodologies
can be best illustrated by a comparison of
the typical indicative minimum to maxi-
mum cost and time ranges for each of the
derivative methods (SYS, FTA, CHECK,
CAPS, and CCTM) displayed against the
classical CC ranges. These are shown in
Figure 1. Note that this diagram has loga-
rithmic scales.

The cost ranges only relate to the eval-
uation and assurance processes them-
selves. The more rigorous methods
impose necessary additional development
costs on the vendor that are not shown
and that also depend on the complexity of
the component or system to be evaluated
or assured.

So these practical considerations
derived a set of IA approaches that are tai-
lored to the demands of the UK con-
sumers. This now provides a full spectrum
of methods that can be applied to meet
real-world assurance activities arising from
information age projects in the UK.

Table 3 provides a summary of the
characteristics and fit of these different
methods according to the different project
needs. This clearly demonstrates the need
for a selection of methods to cover the
full range of assurance requirements that
are needed to address an increasingly
diverse UK market.

How Can This Be Exploited
Outside of the UK?
Alas, the methods outlined in this article are
UK specific and are outside of the scope of
CCRA. Plus, with the exception of CCTM,
they are not focused on re-usable product
certification but on assurance and accredi-
tation requirements for specific UK pro-
jects (with there being some scope within
the UK for re-use of accredited system
designs and architectures). However, the
methods of the CC derivatives are pub-
lished in the public domain.

It is, of course, useful knowledge to
international companies that wish to sell
products and solutions to the UK govern-
ment market.

However, the principal shown is that it is
possible to derive efficient and successful
assurance processes based on the CC model.
CC can be used as a resource to build
methodologies for enhancing the security in
software engineering even if a product cer-
tificate is not the ultimate requirement. This
can have universal application and can reap
the same benefits experienced in the UK of
timely deliveries, cost effective assurance
regimes, and increased confidence in the
security of the end product.

16 CROSSTALK The Journal of Defense Software Engineering March 2007

Assurance Requirement CC SY S FT A CH EC K CAPS CCT M

Certified product mark

Mutual recognition To EAL 4

High assurance

Medium assurance

Low assurance

Pass/fail outcome

Risk enumeration

Flexible re-use

Project specific

Deployment specific

End to end

Bespoke specific

Multi-product/vendor In V 3.1

Polymorphic products

Architecture/system

Service delivery

UK national requirements

Deployment testing

Open ended/iterative

Time bounded

Low cost

Very low cost

Table 3: Information Assurance Method Requirements Fit

Assurance Requirement CC SY S FT A CH EC K CAPS CCT M

Certified product mark

Mutual recognition To EAL 4

High assurance

Medium assurance

Low assurance

Pass/fail outcome

Risk enumeration

Flexible re-use

Project specific

Deployment specific

End to end

Bespoke specific

Multi-product/vendor In V 3.1

Polymorphic products

Architecture/system

Service delivery

UK national requirements

Deployment testing

Open ended/iterative

Time bounded

Low cost

Very low cost

Figure 1: Comparison of Assurance Method Ranges of Cost and Time



How a Variety of Information Assurance Methods Delivers Software Security in the United Kingdom

Looking Forward
It is possible to envisage further assurance
methods that will be required, in the UK
or elsewhere. The CHECK scheme exten-
sion into the testing of deployed applica-
tions demonstrates that there is a need to
encompass all software in the overall
assurance framework. Confidentiality,
integrity and availability are increasingly
protected not by isolated security products
but by different aspects of the whole solu-
tion.

One emerging development is that
CESG has commenced a project to ratio-
nalize the SYS and FTA methods into a tai-
lored assurance framework that will allow spe-
cific programs of work to use CC deriva-
tive methods fitting to their exact need.
This is a natural progression of the philos-
ophy outlined in this article. Perhaps this is
something that will be taken forward to
future generations of CC and ISO 15408.

Conclusions
Is it right to compromise on the original
design of CC? This article has demon-
strated several derivative methods that
reduce its complexity and that focus on
risk management and acceleration of the
development process. It is important to
realize that CC is already a risk manage-
ment method; evaluators do not repeat
every vendor test, nor do they inspect
every line of code. They adopt sampling
approaches to assure the quality of the
vendor product, just as in any risk based
audit. It is also a benefit to be able to
expand the use of elements the CC
methodology from the limited boundaries
of individual software, hardware, and
firmware products to more open ended
solutions and entire architectures.

We argue that the derivatives only
extend the risk management concept to
allow application of its principals in wider
circumstances and to meet real-world
business needs. We strongly believe in the
founding concepts of CC and the impor-
tance of independent assurance of secure
solutions. By recognizing the diversity of
requirements and the flexibility of the
framework to serve them, it will allow the
CC method to meet its vision of universal
recognition of this value in the years to
come.u

References
1. ISO/IEC 15408. “Evaluation Criteria

for IT Security.” ISO 2005 <www.
iso.org>

2. Common Criteria Portal <www.com
moncriteriaportal.org>.

3. UK ITSEC. CESG/DTI 1990 <www.
cesg.gov.uk>.

4. Carnegie Mellon University. Capability
Maturity Model ® Integration (CMMI®).
CMU Software Engineering Institute
<www.sei.cmu.edu/cmmi>.

5. ISO/IEC 27001:2005. Information
Security Management Systems –
Requirements <www. iso.org>.

6. ISO/IEC 17799:2005. Code of Prac-
tice for Information Security Manage-
ment. 2005 <www.iso.org>.

7. IT Governance Institute/Information
Systems Audit and Control Associ-
ation. “The Control Objectives for
Information and Related Technology.”
(COBIT 4.0) 2006 <www. isaca.org>.

8. “Independent Malware Advice.” Virus
Bulletin Ltd. 2006 <www.virusbtn.com>.

9. ICSA labs. Online portal <www.icsa.
net>.

10. “Checkmark Certification and Product
Testing.” West Coast Labs <www.west
coastlabs.org/checkmarkcertification.
asp>.

11. UK ITSEC Scheme Certification
Body. UK IT Security Evaluation and

Certification Scheme – SYSn Assur-
ance Packages Framework (Issue 1.0).
2002 <www.cesg.gov.uk>.

12. CESG. “Fast Track Assessment Ser-
vice: Overview.” CESG. 2001 <www.
cesg. gov.uk>.

13. CESG. “CHECK Service Provision
Guidelines (Vers. 7.0).” 2002 <www.
cesg.gov.uk/site/check/index.cfm>.

14. CESG. “Assisted Products Scheme.”
<www.cesg.gov.uk>.

15. CSIA. “CSIA Claims Tested Mark
Scheme - Description of the Scheme
(Vers. 2.2.0).” CSIA <www.cabinet
office.gov.uk/csia/documents/pdf/
cctm/scheme_description.pdf>.

Note
1. Echelon Consulting Ltd. (UK) is regis-

tered as a legal business entity in the
UK and has no business connection
with 2004-2006 Echelon Corporation
of San Jose, CA.

March 2007 www.stsc.hill.af.mil 17

About the Authors

Mike Ormerod is a
qualified ISO15408 lead
evaluator and consultant
with 17 years evaluation
experience and has been
in the IT industry for 22

years. He has in depth knowledge in
security evaluation and CCTM assess-
ments. Ormerod has had a variety of
customers in the UK government and
private sectors, as well as overseas cus-
tomers expanding to the far east. He is
currently busy establishing the Echelon
Test Facility, based in London, which is
currently undergoing the UKAS certifi-
cation process for Test Laboratory sta-
tus.

Echelon Consulting Ltd.
Echelon House
93 Fleet RD
Fleet
Hampshire
GU51 3PJ
United Kingdom
Phone: +44(0)1252 627799
Fax: +44(0)1252 626509
E-mail: mike.ormerod@

echelonltd.com

Kevin Sloan is a princi-
pal security consultant
and the Echelon
Consulting Ltd. (UK)
Technical services man-
ager. He has a back-

ground in electronics, microprocessor
applications, firmware, software, and
data communications, and specializes in
information security. He has more than
26 years experience in the IT industry
with information and communications
security experience spanning over the
last 18 years. Sloan is qualified by CESG
to undertake IA activities for many UK
government customers and has been a
key player on several significant UK
eGovernment projects. He has broad
experience with commercial clients in
the UK and overseas.

Echelon Consulting Ltd.
Echelon House
93 Fleet RD
Fleet
Hampshire
GU51 3PJ
United Kingdom
Phone: +44(0)1252 627799
Fax: +44(0)1252 626509
E-mail: kevin.sloan@

echelonltd.com



18 CROSSTALK The Journal of Defense Software Engineering March 2007

Software security deals with the abili-
ty to protect software and its under-

lying systems from being exploited by
unauthorized users and from mishaps
from authorized users. This includes
safeguarding against direct attacks [1],
detecting and preventing indirect
attacks that take advantage of software
defects, removing defects, and preserv-
ing the intrinsic value (such as the
inherent intellectual property) of the
system.

Approaches to ensure that software
systems are secure fall along a continu-
um ranging from reactive to proactive
techniques. Reactive proponents tend
to favor a post-facto approach – apply-
ing security measures to software after
it has been developed. This is based on
the opinion that it is not possible to
protect against every single conceivable
threat. This philosophy is articulated as
if security is the absence of risk, then we will
never get a system that is both secure and use-
ful. There is a need to balance risk and control
[2]. Reactive approaches hinge on three
assumptions. First, systems that are
exhaustively assessed for security
become hard to use and the cost in time
and effort to produce and use such sys-
tems defies the economics of software
development. Second, risk handling
should be deferred until a problem
actually occurs. Third, tools to handle
problems need to be in place to handle
issues when they arise [2].

The proactive approach, on the
other hand, requires that security mea-
sures be implemented during the soft-
ware life cycle as part of the develop-
ment process, so that fielded systems
require little or no patching. This is
based on the premise that if software is
built with security in mind then vulner-
abilities will be addressed early in the
development cycle. To do so, propo-
nents of proactive security measures
require that architectures and designs
that actively promote security be creat-

ed and that risk management be applied
throughout the development process.
Put bluntly, this is the philosophy of
building things right, designing for security,
analyzing security over the whole life cycle, and
coding securely [3].

In practice, both approaches are nec-
essary to create secure software. Since
systems are often a composite of unreli-
able parts, putting those parts together
to ensure security is an engineering

problem, and as such, software develop-
ment should be approached with the
attitude that secure and effective solu-
tions can be created even when some of
the materials used are flawed [2].

Recent media attention on the fre-
quency of security patches that are
required by popular software packages
may lead developers to think that soft-
ware security is an overwhelmingly
complex issue. While security is diffi-
cult, it is not impossible. There are
three specific high-leverage techniques
that can be used, such as threat model-
ing, risk analysis, and software assess-
ment and security testing. Each of
these is well within the reach of the
skills of most developers.

Threat Modeling
The purpose of threat modeling is to
examine the security of a software
component from the perspective of
what types of attack are likely to take
place on it. Traditionally, the practice of
using graphical software representa-
tions, such as Unified Modeling
Language (known as UML), focuses on
describing what is expected of a sys-
tem, not what is unexpected. Threat
modeling augments this approach by
requiring developers to consider ways a
component might be misused based on
past history. It helps developers think
beyond standard features and consider
negative or unexpected events. Arising
from threat modeling are misuse and
abuse cases which address abnormal
behavior. Extending use-cases to in-
clude misuse-cases that depict side-by-
side what behavior should be supported
and what should be prevented has been
proposed [4]. Threat modeling helps
developers view the software compo-
nent from the perspective of an attack-
er, thus bringing security to the fore-
front during all phases of development.

Threat modeling begins with a cata-
log of agents and attacks that have been
carried out on other systems. There are
vulnerability databases such as the
National Vulnerability Database (NVD)
[5] and Open Source Vulnerability
Database (OSVDB) [6] that incorporate
publicly available vulnerability re-
sources and would make a good starting
point in documenting these agents and
attacks. At its most fundamental, the
catalog consists of well-known vulnera-
bilities, such as problems arising from
boundary conditions, intersystem com-
munication, system assumptions, etc.
Other vulnerabilities are added as they
are observed.

The threat model specific to a soft-
ware component – from which use and
misuse cases are constructed – is con-
structed in the following three steps [7]:

High-Leverage Techniques for Software Security

Idongesit Mkpong-Ruffin and Dr. David Umphress
Auburn University

Software security addresses the degree to which software can be exploited or misused. Software development approaches
tend to polarize security efforts as being reactive or proactive; a blend of both approaches is needed in practice. Three
categories of tools provide such a blend: threat modeling, risk analysis, and security assessment and testing. These tools
provide leverage as they are currently in use as quality assurance methods and can be modified with relatively little effort
to address security. 

“The purpose of
threat modeling is to
examine the security

of a software
component from the
perspective of what
types of attack are

likely to take
place on it.”



High-Leverage Techniques for Software Security

1. A behavior model of intended func-
tions is defined based on the func-
tional requirements.

2. Based on the behavior model, deci-
sions on potential misuse/abuse or
anomalies of the intended functions
that would violate any of the securi-
ty goals are made.

3. Mitigations for misuse or anomalies
in the threat model are specified.
The steps are frequently carried out

iteratively, with the derived security
models built with different levels of
detail.

Tools and methodologies that are
helpful in threat modeling are attack
trees [8], attack nets [9], and attack pat-
tern matching [10]. These methodolo-
gies approach threat identification at dif-
ferent levels of abstraction. Attack trees
diagram the steps an attacker would take
in completing his/her objective [8].
Attack trees tend to be most effective in
smaller applications. An attack net, an
extension of an attack tree, is a Petri net
used to represent complex security
threats with variation within attack pat-
terns [9]. Attack nets are not meant to
model the actual behavior of a sys-
tem/component when an attack hap-
pens but are used to organize the devel-
opment of probable attack scenarios.
Concurrency and attack progress are
modeled as tokens, and intermediate and
final objectives are modeled as places,
while commands or inputs are modeled
as transitions [9]. Attack pattern match-
ing processes such as Security Analysis
for Existing Threats [10] and Microsoft’s
Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of
Service, and Elevation of Privilege
(STRIDE)  [11] approach, are designed
to match attack patterns to system
designs. These processes are used at the
design level to provide a higher level of
abstraction so that the evolving system
design can incorporate security mea-
sures to the process.

Risk Analysis
Risk is the probability that an event
with a negative impact will occur. It is
determined by factors such as the ease
of executing an attack, the attacker’s
motivation and resources, a system’s
existing vulnerabilities, and the cost or
impact in a particular business context
[1]. Risk analysis deals with the way
threats are described. It takes into
account the impacts, the probable con-
sequences, and the probability and fre-
quency of occurrence of each threat [1,
12]. It helps in determining ways to alle-

viate identified risks by providing selec-
tion criteria for safeguards and other
means of preventing or lessening iden-
tified risks to a level that is considered
acceptable.

The activities that are done during
risk analysis are determined by the
security requirements received during
requirements and design phase analysis.
Common risk analysis activities include
risk identification, assessment, charac-
terization, communication, mitigation,
and risk-specific policy definition [12].
Techniques such as asset valuation,
quantitative risk analysis, and qualitative
risk analysis are used in risk analysis to
gather required information so that
security-relevant design specifications
can be created [13]. The information
gained from risk analysis is used while
choosing tools and mechanisms for the
security design process. The value of
assets and the cost of attacks are com-
pared with the costs of tools and mech-
anisms in order to ensure the chosen

tools and mechanisms are appropriate
and proportionate to the risk to which
the application or system is exposed.

Asset valuation is the process used
to determine the worth of an asset. It
examines information not only of the
hardware and software pertinent to the
system but also personnel and other
physical assets. The value of the asset is
made up of its inherent value and the
short and long term impacts and conse-
quences of its compromise [14]. This
aids in justifying proposed mitigation to
stakeholder, legal and other regulatory
requirements [1, 12].

Quantitative risk analysis is used to
identify the key risk elements and the
value associated with identified risk.
This information allows for the estima-
tion of potential loss and the ability to
analyze potential threats. Quantitative
risk analysis is used to compute what is
known as the Annual Loss Expectancy
(ALE):

ALE = Single Loss Expectancy (SLE) x
Annualized Rate of Occurrence (ARO) 

where, 

ARO is the frequency of threat per year,
SLE is the asset value x the exposure
factor (EF), and EF is the percentage of
asset loss caused by the potential threat.

The values garnered from the quantita-
tive analysis can then be ranked and deci-
sions can then be made based upon the
information.

Lastly, qualitative risk analysis is used
to discover the threats and vulnerabilities
that apply to different identified scenar-
ios. Safeguards and countermeasures that
reduce or prevent the probability and
effect of occurrence are identified, based
on the threats and vulnerabilities found
[12]. Most qualitative risk analysis
methodologies assign weight and values
to categories such as  probability of
occurrence, impact, exposure, and cost.
Higher values are assigned to categories
that are assumed to be of greater impor-
tance, thereby reflecting their impact in
the overall priority score.

The information gathered during risk
analysis is then used in the rest of the
development cycle. Fault-injection meth-
ods and security tests are driven by the
vulnerabilities and risks discovered and
annotated during risk analysis.

Software Assessment and
Security Testing
Testing traditionally involves exercising
an application to see if it works as it
should. In contrast, security testing
entails identifying and removing vulnera-
bilities that could result in security viola-
tions. It also validates the effectiveness of
security measures that are in place [15].

Most of the testing methodologies
used fall into one of two categories: black-
box or white-box testing. Black-box tests
are those whose data are derived from the
specified functional requirements in which
attention is not given to the final program
structure [16, 17]. Commonly used black-
box testing approaches for software secu-
rity are penetration, functional, risk-based,
and unit testing.

White-box tests are those tests and
assessment activities where the structure
and flow of the software under review
are visible to the tester. Testing plans are
made based on the details of the software
implementation and test cases are based
on the program structure [15, 16, 17].
Commonly used white-box assessment

March 2007 www.stsc.hill.af.mil 19

“Quantitative risk
analysis is used to
identify the key risk
elements and the
value associated

with identified risk.”



Software Security

approaches that can assess security are
source code analysis and profiling.

The method by which security
assessment and testing is carried out
depends on the perspective of the
tester relative to the software compo-
nent. Test cases that are constructed
based on functional requirements with-
out regard to specific knowledge about
software internals are known as black-
box tests; test cases that take advantage
of internal structure are known as
white-box tests. Often, the information
gathered during risk analysis is used to
develop white-box and black-box test
cases. In particular, flaws identified dur-
ing risk analysis can be purposely added
to a software component to forcibly
change the program state and demon-
strate the effects of a successfully
exploited vulnerability. This approach,
known as fault injection, allows for
absolute worst-case prediction [18]. It
gives an insight into predictive mea-
sures such as mean-time-to-hazard,
minimum-time-to-hazard, and mean-
time-to-failure; all of which quantify
risk.

Three approaches are commonly
taken to test the security of a compo-
nent in a black-box fashion. Risk-based
testing demonstrates that security func-
tionalities work as intended [19].
Penetration testing examines the ease
with which a component can be infil-
trated. Unit security testing assumes
that adversaries will take a two-stage
approach to attack: First, they get
access to the software, then second,
control the software after access. As
such, the assumptions that developers
make about the environment and incor-
porate into the components should be
checked at the unit testing level. Attack
trees have been used by many as a
method for identifying and modeling
security threats, especially those that
involve many stages for implementation
[20].

Two high-leverage white-box tech-
niques for assessing and validating
security are source code analysis and
profiling. Static analysis tools are used
to look at the text of a program while it
is not executing so that it can discover
vulnerabilities within the program. A
fixed set of patterns or rules are used as
basis for scanning the source code. For
example, many vulnerabilities are
known to come from reusable library
functions such as stropy() and stat ();
so, a static analyzer could scan the pro-
grams to see if they contain any calls to
those functions. The result of the

source code analysis aids in the devel-
opment of test cases and gives a good
perspective of the security posture of
the application. White-box testing
should be used to verify that the poten-
tial vulnerabilities uncovered by the sta-
tic analysis tool will not lead to security
violations [21].

Profiling tools enable the tester to
observe the performance of an applica-
tion while it is running. This provides
insight into where performance bottle-
necks may be occurring. It also enables
the tester to see and understand the
sequence of function calls and the time
spent in different areas of the software,
and thereby brings it to the open areas
of vulnerability that are not apparent
when using static code analyzers [12].

Although security aspects of soft-
ware should be tested, it is also impor-
tant to understand that security is not
just a function that can be checked off
but is an emergent property of the
application. In other words, this would
be analogous to saying that being dry is
an emergent property of being inside a
tent during a rainstorm. The tent only
keeps a person dry if the poles are
made stable, vertical, and able to sup-
port the weight of the wet fabric; the
tent also must have waterproof fabric
(without any holes) and be large enough
to protect all those who want to remain
dry. Lastly, everyone must stay under
the tent the whole time it is raining. So,
although having poles and fabric is
important, it would not be enough to
say the tent has poles and fabric, thus it keeps
one dry! [22].

Conclusion
To develop software systems with secu-
rity as an emergent feature entails that

the high leveraged techniques discussed
be incorporated into the whole soft-
ware development life cycle. Threat
modeling that drives risk analysis begins
with the garnering of requirements and
use cases. Risks generated from the
threat modeling activities act as a
barometer for design, development of
tests, and development of rules for
software code assessment and as one of
the benchmarks for testing.

Software security demands a balance
of reactive and proactive measures, and
it requires that more time be spent in
determining the risks that can or will
affect the system. Software systems
have to be designed from a high enough
level of abstraction with security of the
system as an emergent feature of the
system in question. The processes uti-
lized to create secure systems need
more refinement so that the ubiquity of
software is not hampered by inherent
insecurity due to poor design.u

References
1. Verdon, Denis, and Gary McGraw.

“Risk Analysis in Software Design.”
IEEE Security and Privacy 2.4 (2004).

2. Cheswick, B, Paul Kocher, G.
McGraw, and A. Rubin. “Bacon Ice
Cream: The Best Mix of Proactive and
Reactive Security?” IEEE Security and
Privacy 1.4 (2003).

3. McGraw, Gary. “Building Secure
Software: Better Than Protecting Bad
Software.” IEEE Software 5.7 (2002).

4. G. Sindre, and A.L. Opdahl. Templates
for Misuse Case Description. Proc. of
the Seventh International Workshop
on Requirements Engineering, Foun-
dation for Software Quality (REFSQ
2001), 4-5 June 2001, Switzerland.

5. United States. Department of
Homeland Security (DHS). National
Vulnerability Database 7 Dec. 2006
<http://nvd.nist.gov/>.

6. OSVDB. Open Source Vulnerability
Database. 8 Dec. 2006 <www.
osvdb.org>.

7. Dianxiang Xu, and Kendall Nygard.
“A Threat-Driven Approach to
Modeling and Verifying Secure
Software.” Proc. of the 20th IEEE/
ACM International Conference on
Automated Software Engineering
ASE, Nov. 2005, Long Beach, CA.
New York: ACM Press, 2005.

8. Schneier, B. “Attack Trees: Modeling
Security Threats.” Dr. Dobb’s Journal
Dec. 1999.

9. McDermott, J.P. “Attack Net Penetra-
tion Testing.” Proc. of the 2000
Workshop on New Security Paradigm,

20 CROSSTALK The Journal of Defense Software Engineering March 2007

“Software security
demands a balance

of reactive and
proactive measures, and

it requires that more
time be spent in

determining the risks
that can or will affect

the system.”



High-Leverage Techniques for Software Security

March 2007 www.stsc.hill.af.mil 21

About the Authors

David A. Umphress,
Ph.D., is an associate
professor of computer
science and software
engineering at Auburn
University. He has

worked over the past 25 years in various
software development capacities in both
industry and academia. He is also an Air
Force reservist, currently serving as a
researcher for the College of Aerospace
Doctrine, Research and Education,
Maxwell AFB, Alabama. Umphress is an
Institute of Electrical and Electronics
Engineers certified software develop-
ment professional.

Department of Computer 
Science and Software Engineering
Auburn University
107 Dunstan Hall
Auburn,AL 36849-5347
Phone: (334) 844-6335
E-mail: umphrda@eng.auburn.edu

Idongesit Mkpong-
Ruffin is a computer sci-
ence and software engi-
neering doctorate stu-
dent at Auburn Univer-
sity. She has a Bachelor

of Science in computer information
Science from Freed-Hardeman Univer-
sity, a Master of Business Administra-
tion from Tennessee State University
and a Master of Science in computer
information science from Troy Univer-
sity, Montgomery campus.

Department of Computer 
Science and Software Engineering
Auburn University
107 Dunstan Hall
Auburn,AL 36849-5347 
Phone: (334) 844-7001
E-mail: mkponio@auburn.edu

Sept. 2000. Ballycotton, County Cork,
Ireland. New York: ACM Press, 2000.

10. Gegick, M., and L. Williams. “Match-
ing Attack Patterns to Security
Vulnerabilities in Software-Intensive
System Designs.” Proc. of the 2005
Workshop on Software Engineering
For Secure Systems; Building
Trustworthy Applications, 15-16 May
2005, St. Louis, MS. New York: ACM
Press, 2005 <http://doi.acm.org/10.
1145/1083200.1083211>.

11. Hernan, Shawn, Scott Lambert,
Tomasz Ostwald, and Adam Shos-
tack. “Threat Modeling – Uncover
Security Design Flaws Using The
STRIDE Approach.” MSDN Maga-
zine Nov. 2006.

12. Steel, Christopher, Ramesh Nagappan,
and Ray Lai. Core Security Patterns:
Best Practices and Strategies for J2EE,
Web Services, and Identity Manage-
ment. Prentice Hall, 2005.

13. McGraw, Gary. Software Security:
Building Security In. Addison-Wesley
Professional, 2006.

14. United States. Department of Com-
merce. An Introduction to Computer
Security – The NIST Handbook.
NIST, 1995.

15. Pan, Jiantao. “Software Testing – 18-
849b Dependable Embedded Sys-
tems.” Carnegie Mellon University,

1999 <www.ece.cmu.edu/~koop man/
des_s99/sw_testing>.

16. Howard, Michael, and David C.
LeBlanc. Writing Secure Code. 2nd ed.
Redmond, WA: Microsoft Press, 2002.

17. Hetzel, William C. The Complete
Guide to Software Testing. 2nd ed.
Wellesley, MA: QED Information
Sciences, 1988.

18. Voas, Jeffrey M., and Gary McGraw.
Software Fault Injection: Inoculating
Programs Against Errors. New York,
NY: John Wiley & Sons, 1998.

19. Michael, C.C., and Will Radosevich.
“Risk-Based and Functional Security
Testing.” DHS. BuildSecurityIn Portal
<https://buildsecurityin.us-cert.
gov/portal/article/bestpractices/secu
ri ty_test ing/over view.xml#Risk
-Based-Testing>.

20. Schneier, B. Secrets and Lies: Digital
Security in a Networked World. New
York: John Wiley & Sons, 2000.

21. Janardhanudu, Girish. “White Box
Testing.” DHS. BuildSecurityIn <https://
buildsecurityin.us-cert.gov/portal/
article/bestpractices/white_box_
testing/overview.xml>.

22. Hope, Paco, Gary McGraw, and Annie
I. Anto’n. “Misuse and Abuse Cases:
Getting Past the Positive.” IEEE
Security and Privacy 2.3 (2003).

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:
NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005
SEPT2006 c SOFTWARE ASSURANCE

OCT2006 c STAR WARS TO STAR TREK

NOV2006 c MANAGEMENT BASICS

DEC2006 c REQUIREMENTS ENG.
JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI
To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.



Traditional systems development life-
cycles (SDLCs) used to develop

information systems generally exclude
security activities. Without explicitly
defining security activities during sys-
tems development, security may not be
completely planned for or even consid-
ered. Integrating security activities into
the SDLC helps address this issue.
Security activities can be included in
phases such as requirements, design,
build, or test to ensure that governance
or industry best practices are satisfied,
and that the goal of the system is
achieved without conflict.

The Benefits of Integrating
Security Into the SDLC 
Bolting on security post-development is
no longer sufficient in delivering sys-
tems on time, under budget, and with
the proper level of protection in place.
Addressing the issue, the Computer
Emergency Readiness Team Coordina-
tion Center (CERT/CC) states the fol-
lowing:

… many security incidents are
the result of exploits against
defects in the design or code of
software. The approach most
commonly employed to address
such defects is to attempt to
retroactively bolt on devices that
make it more difficult for those
defects to be exploited. This is
not a solution that gets to the
root cause of the problem and
threat. [2]

It is estimated that bolting-on securi-
ty post-development costs roughly three
times more than the cost of built-in
security. According to Gartner, if 50
percent of vulnerabilities were removed
before production of purchased and
internally developed software, enter-
prise configuration management (CM)
costs and incident-response costs could

be reduced by 75 percent each [3].
Building in security ensures proper

and cost-effective protection. Assets
that are identified and categorized can
be more appropriately protected in
terms of adequacy and cost. For exam-
ple, when risk analysis is performed dur-
ing the requirements phase, security
risks may be identified which translate
into security requirements.

Approaches for Integrating
Security Into the SDLC
Regardless of the SDLC model used (e.g.
waterfall, spiral, Rational Unified Process),
the SDLC represents a phased approach
to the development of a system. An
appropriate model should facilitate the re-
analysis and validation of the plans,
requirements, and design at multiple
points throughout its life cycle. Whether
regarded as a phase or discipline, an SDLC
is composed of several common group-
ings of activities: requirements, design and
build, test and deploy, operations and
maintenance, and disposal, with full life-
cycle support activities such as risk man-
agement, CM, and training. Security can
be integrated into these different points of
the SDLC independent of the model.

Figure 1 describes each phase or disci-
pline of an SDLC with the associated
security activities.

Full Life-Cycle Support Activities
Risk Management
Risk management includes performing
security risk analyses at different points of
the life cycle. Security risk analysis serves to
identify and mitigate security-related risks.

The results of the risk analysis feed
into the risk management process of iden-
tifying, controlling, and eliminating or
minimizing uncertain events that may
affect the system. Risk analysis should be
repeated iteratively throughout the sys-
tem’s life cycle as different activities allow
opportunities to identify new or changing
risks. For instance, as the project progress-

es forward and activities shift from
requirements development to high-level
system design, additional information will
be uncovered about the application. This
new information may reveal risks not pre-
viously identified such as use of vulnera-
ble components or a flawed authentica-
tion model. We also know that changes to
design during the build phase are almost
always certain to occur. That is why it is
important to also perform a risk analysis
on the system after it has been built.

CM
Inaccurate or incomplete CM may enable
malicious developers to exploit the short-
comings in the CM process in order to
make unauthorized or undocumented
changes to the software. Lack of proper
software change control, for example,
could allow rogue developers to insert or
substitute malicious code, introduce
exploitable vulnerabilities, or remove or
modify security controls implemented in
the software. Good CM practices also pre-
vent the introduction of unintentional
flaws into software code. For example, a
developer makes a seemingly harmless
modification to the application’s interface
before deployment and is able to bypass
the CM process. This change unintention-
ally gives normal, restricted users elevated
privileges to view information they nor-
mally would not be allowed to access. Since
the CM process was bypassed, this change
was not analyzed or tested for its security
impact as it normally should have been.

By tracking and controlling all of the
artifacts of the system development
process, CM helps ensure that changes
made to those artifacts cannot compro-
mise the trustworthiness of the software
as it evolves through each phase of the
process. Coming from a systems develop-
ment background, I have had the oppor-
tunity to practice CM hands on. Now that
I am involved in security, I have found that
good CM is no different than CM for
security. Thus, practicing good CM is
good security.

Baking in Security During the
Systems Development Life Cycle

Vulnerabilities in software that are introduced by mistake or poor practices pose a serious threat. Combating threats in today’s
electronic environment requires a methodical approach in building security into software from the ground up, or baking in
security as some of us refer to it. The absence of a planned approach opens the possibility for application flaws which adver-
saries could potentially exploit. Exploiting application flaws is a likely scenario, considering a Gartner report that states that
75 percent of successful attacks are targeted towards vulnerabilities at the application layer [1].

Kwok H. Cheng
Booz Allen Hamilton

22 CROSSTALK The Journal of Defense Software Engineering March 2007



Baking in Security During the Systems Development Life Cycle

Requirements
During requirements, a risk analysis of
the initial functional requirements
should be conducted. This initial analy-
sis should form an important source of
security requirements for the system and
is the best way to start if the project
team is having difficulty identifying ini-
tial security requirements. This helps
address the familiar question where do I
start? 

Performing threat modeling and mis-
use/abuse cases are also important
sources for developing appropriate secu-
rity requirements as well as secure
design. Threat modeling attempts to
identify potential threats to the software,
estimating the risk vulnerabilities may be
exploited by these threats, and then
defining countermeasures to mitigate
the risks to the application. The devel-
opment of misuse/abuse cases helps
articulate scenarios in which security
requirements can be derived. For exam-
ple, a security requirement for validating
user input could be developed to address
a misuse/abuse scenario in which a user
enters malicious scripting in the applica-
tion’s input field. Other sources for
security requirements could be from
policy, laws, regulations, standards, or
best practices documents such as the
following:
• Federal Information Security Man-

agement Act  [4].
• Defense Information Systems

Agency Security Technical Imple-
mentation Guides [5].

• National Institute of Standards and
Technology (NIST) 800 series
Special Publications [6].

• Comprehensive Lightweight Appli-
cation Security Process  [7].

• The Open Web Application Security
Project (OWASP) best practices [8].
Additional security requirements dis-

covered during the design, build, and
test phases should be incorporated back
into the system’s requirements specifica-

tion. Security flaws and defects found
during testing should be analyzed to
determine whether they originated with
the system’s requirements, design, or
implementation and the root cause
should be corrected in order to remove
or mitigate the risk associated with that
vulnerability. Tracing the origin of secu-
rity defects is a form of measurement
analysis that will help the organization
identify where processes or products can
be improved. This can tie into an orga-
nization’s overall process improvement
effort (e.g., Capability Maturity Model®

Integration, International Organization
for Standardization 9001, Six Sigma).

Risk analysis can also help prioritize
security requirements to focus resources
on those components or functions that
introduce the greatest vulnerabilities to
the system. Specifically, security require-
ments that help mitigate the most critical
risks identified from the risk assessment
should be given priority over other
requirements. In addition, it aids in strik-
ing a balance between security and func-
tionality of the system.

Security requirements should not be
treated separately from functional sys-
tem requirements. Rather, the scope of
the requirements development phase
should be expanded to include security

considerations. Ideally, both security and
non-security requirements should exist
in a solidified system requirements spec-
ification.

Design and Build 
Integrating security into the selection or
development of the architecture can be
seamlessly achieved. When evaluating
architectures for use, consider the secu-
rity aspects of the candidate models or
components, such as the following:
• Existing known vulnerabilities.
• Integration with other security prod-

ucts, such as an enterprise-level
authentication product.

• Resiliency against certain attacks
(e.g., cross-site scripting, structured
query language [SQL] injection).1

• Ability to meet security require-
ments.
For example, when selecting com-

mercial off-the-shelf products for inte-
gration, a search in the National
Vulnerability Database (NVD) can
determine if any known vulnerabilities
exist for that particular product.

Comparing the access control mech-
anisms in Java frameworks such as Struts
or Spring might be an example of a secu-
rity consideration during architecture
selection. Assessing how each frame-
work handles security helps in develop-
ing the correct architecture – something
that is often overlooked.

A secure architecture incorporates
overlaps of security controls among
components as well as built-in fall backs
if the security controls of any one com-
ponent are compromised. This is com-
monly referred to as defense-in-depth. For
example, I typically advise customers to
implement three layers of defense
against SQL injection attacks. First,
client-side input restrictions should be
implemented for the purposes of
thwarting casual attacks and providing
faster response times in generating error
messages. Then, input validation should
be built into the application as a sec-

March 2007 www.stsc.hill.af.mil 23

“Risk analysis should
be repeated iteratively

throughout the
system’s life cycle

as different activities
allow opportunities
to identify new or
changing risks.”

Requirements

• Security Risk Analysis

• Threat Modeling

• Security Requirements

Design and Build Test and Deploy

• Static Analysis of Source Code

• Security Testing

Operations and Maintenance

• Risk Analysis

• Vulnerability and Patch Management

Disposal

• Media Sanitization

Full Lifecycle

• Risk Management

• Configuration Management

• Secure Architecture and Design
• Security Minded Component Selection
• Vulnerability Analysis of Design
• Secure Coding

Figure 1: Phases of an SDLC



Software Security

ondary line of defense. If the applica-
tion receives repeated suspicious input
at this point, it may be reasonable to
assume that an attack is being attempt-
ed. Third, database calls should be con-
structed using parameterized queries to
eliminate the possibility of SQL injec-
tion and to aid in the manageability of
queries. In this architecture, there are
fall backs in case a line of defense is
compromised. Although all mechanisms
provide an additional layer of defense,
they also clearly have their own advan-
tages in providing other features such as
performance, incident detection, and
manageability. Secure architecture of
the application should also include
countermeasures to compensate for
vulnerabilities or inadequate assurance
levels in its individual components and
inter-component interfaces.

Designing for security involves both
proactive detection and prevention of
attacks, along with minimizing the
impacts of successful attacks.
Mechanisms such as fail-safe design,
self-testing, exception handling, warn-
ings to administrators or users, and self-
reconfigurations should be designed
into the application itself, while addi-
tional prevention, monitoring, and
response mechanisms (e.g., application
firewalls, intrusion detection systems,
and security kernels) should be incorpo-
rated as defense-in-depth measures in
the application’s execution environ-
ment. The idea is that security mecha-
nisms should be embedded into the
application itself in addition to the tra-
ditional prevention, monitoring, and
response mechanisms that are imple-
mented around the perimeter of the
application.

A fail-safe design, sometimes
referred to as fail-secure, is a design that
allows the application, in the event of
an unrecoverable error, to fail without
causing the application to be insecure.
An example might be an application
defaulting to no-access when a failed
connection does not allow it to validate
user permissions. At the source-code
level, implementation of fail-safe may
include having a default case in condi-
tional code to protect the application in
a situation where the other conditions
are somehow not met. Self-testing is
when the application can verify that its
own security functionality is working
properly. Robust exception handling is
critical to security. It helps identify the
source of problems and can be used for
investigative purposes. Relying solely on
exception handling by the Web server is

not recommended, as it cannot capture
specific actions taken on the applica-
tion.

Designing for security involves the
following key practices:
• Envision potential targets for

attacks. What component of the sys-
tem is most likely to be attacked?

• Analyze attacks from both external
and internal sources; do not forget
about malicious users inside the net-
work.

• Design and include proven authenti-
cation methods, access policies,
cryptographic algorithms, or other
forms of security controls where
appropriate.
Integration of security into the cod-

ing phase is relatively straightforward.
For custom coding, developers should
implement secure coding practices. For
example, developers should ensure that
user input is validated so that it only

contains data that is expected, i.e., no
malicious scripting or malformed input.
Code should be thread-safe, so that dur-
ing simultaneous execution by multiple
threads, the code functions correctly
and does not inadvertently access the
data of other threads. Errors should be
properly handled and debugging error
messages should not be displayed to the
user.

Security in implementation of pur-
chased or acquired components focuses
on implementing countermeasures and
constraints to deal with known vulnera-
bilities in the individual components
and their interfaces.

For custom-developed applications,
coding standards are usually defined as
part of the overall project effort. The
project’s coding standards should be
augmented with extra standards for
secure coding. For example, Sun has a
set of security coding guidelines avail-
able [9] which would be effortless to
integrate into the project’s coding stan-
dards document. It cannot get much
easier than this.

Providing a set of secure coding
standards does not guarantee those
practices will always be implemented.
Therefore, validation of the source
code is an essential activity. Much like
peer review of source code, a security
code review should be performed to
assess the correctness and adequacy of
the source code, but from a security
standpoint. This technique is also
referred to as white-box testing. The crite-
ria selected to evaluate the source code
should mirror the secure coding stan-
dards defined, or an agreed upon set of
criteria based upon the level of risk an
organization is willing to accept. Code
analysis discovers subtle and elusive
implementation errors before they reach
testing or fielded system status. By cor-
recting subtle errors in the code early,
software development organizations
can save engineering costs in testing and
long-term maintenance [10]. Analysis
can be performed manually or with
automated tools. The Software
Assurance Metrics And Tool Evaluation
project at NIST attempts to classify
software assurance tools and provides a
comprehensive listing of code analysis
tools [11].

Test and Deploy
Software security testing is not the same
as traditional functional testing. The
main objectives of software security
testing are to identify vulnerabilities in
the software and to ensure the secure
behavior of software in the face of an
attack.

Several techniques can be used for
security testing, such as a vulnerability
scan, penetration test, and security-ori-
ented fault injection2. Vulnerability
scans are performed with tools that
attempt to detect application-level vul-
nerabilities (e.g., SQL injection, cross-
site scripting) based on known attack
patterns. Penetration testing attempts to
break the application from the outside
(the hacker’s perspective). This can be
accomplished manually by security spe-
cialists or in an automated fashion with
tools such as brute-force attack tools.

What if a security code review has
already been performed? Is it necessary to
perform security testing since it is just
another form of validation?   Both valida-
tion techniques have their benefits and
drawbacks. Security testing may simulate
real-world attacks and exploitable vulnera-
bilities. Security testing may also be per-
formed in conjunction with functional
testing (assuming the capability is present).
However, once vulnerabilities are found

24 CROSSTALK The Journal of Defense Software Engineering March 2007

“Providing a set of
secure coding

standards does not
guarantee those

practices will always
be implemented.”



Baking in Security During the Systems Development Life Cycle

during testing, there is often limited time
available to correct the problem. An ideal
validation approach would be to comple-
ment source code analysis (performed
during build) with security testing. With
this approach, a minimal number of secu-
rity flaws can be expected to come out of
testing, which allows adequate time to cor-
rect them. Of course, a more pragmatic
approach would be dependent on the
amount of assurance required from the
system and a definition of the overall
security goal. An organization may choose
to perform risk-based security code analy-
sis or testing, assessing limited portions of
the application based on risk.

Findings from security testing should
also be fed back through the change con-
trol process as would non-security find-
ings during functional testing.

Operations and Maintenance
Before the application goes into produc-
tion, a security risk analysis should be per-
formed to ensure that the application
(new or updated) does not introduce an
unacceptable level of risk. Results of
security testing should be fed into the risk
analysis, given there are viable threats to
the vulnerabilities identified during testing.

Periodic risk assessments should be
performed as the threat environment con-
stantly changes. New attacks can uncover
previously unseen vulnerabilities. It is also
important to conduct risk analysis when-
ever major changes to the system occur. In
the federal government, findings are fed
into a plan of actions and milestones,
where the mitigation is tracked to closure
[12].

Major changes also require validation –
a security code review and test. A good
approach is to perform security code
reviews and then attempt to exploit the
more severe findings. This gives organiza-
tions a feel for the reality of their findings.

From an operational standpoint, it is
important to constantly monitor security
alerts and advisories that pertain to the
technology implemented by the software
since it is not uncommon for systems to
fall victim to zero-day attacks3. A time-sav-
ing approach could be to subscribe to
security alerts or feeds from product ven-
dors or cyber-security sites such as the U.S.
CERT or the NVD. This eliminates the
need and dependency for administrators
to constantly check Web sites for security
updates. The counterpart to receiving
advisories is an approach to address them
once they are received. Therefore, it is crit-
ical to have a vulnerability and patch man-
agement program in place so that correc-
tive action is taken, i.e., patches and fixes

are applied in a consistent, timely manner.

Disposal
Security incidents are often seen when
equipment is repurposed or disposed
without completely eliminating records
from hard drives or other data storage
devices. Hardware and software should
be appropriately sanitized, especially if
the equipment will be re-used or repur-
posed.

Conclusion
Many of the security activities described
in this article are simply an expansion of
the current activities to include security
considerations. Security is not as diffi-
cult to integrate into the SDLC as it may
appear, and it is vastly more effective
than bolting it on at the end. Integrated
security ensures that the security mech-
anisms are adequate and effective,
something that bolt-on security cannot
boast.

Traditional approaches to security
such as firewalls, intrusion detection
systems, or server hardening are still
important elements of security, but they
are in no way the silver bullet for soft-
ware security. They cannot protect the
application itself against compromise.
This is quite a paradox considering the
application is the most visible of all the
aforementioned components. The addi-
tion of these activities ensures that ade-
quate security is baked-in to the end
product and not sprinkled on, providing
the system with resilience against
attacks.u

References
1. Gartner, Inc. “Recommendations for

Security Administration, 2006.” Qwest
Communications 12 Dec. 2006 <www.
mediaproducts.gartner.com/gc/web
letter/qwest/issue4/gartner2.html>.

2. Carnegie Mellon University. CERT/
CC <www.cert.org>

3. Havenstein, Heather. “Baked-In Se-
curity.” ComputerWorld 21 Mar. 2005.

4. NIST. “Federal Information Security
Management Act.” <www.csrc.nist.
gov/policies/FISMA-final.pdf>.

5. NIST. Security Configuration Check-
lists Repository. <www.checklists.nist.
gov/repository/index.html>.

6. NIST Publications. Computer Security
Resource Center <www.csrc.nist.gov/
publications/nistpubs>.

7. Viega, John. Building Secure Software.
Addison-Wesley Professional, 2001.

8. OWASP. The Open Web Application
Security Project <www.owasp.org>.

9. Sun Developer Network. “Secure Co-

ding Guidelines.” 2000 <www.java.
sun.com/security/seccodeguide.
html>.

10. Lavenhar, Steven. “Code Analysis.”
BuildSecurityIn Portal. National Cyber
Security Division. 28 Jan. 2006 <www.
buildsecurityin.us-cert.gov/daisy/ bsi/
articles/best-practices/code/214.
html?branch=1&language=1>.

11. NIST. “Tool Taxonomy.” <www.
samate.nist.gov/index.php/Tool_Tax
onomy>.

12. Daniels, Mitchell E. Jr. “Memoranda
02-01.” 17 Oct. 2001 <www.whitehouse.
gov/omb/memoranda/m02-01 .
html>.

Notes
1. SQL injection is a type of security

exploit in which the attacker adds SQL
code to a Web form input box to gain
access to resources or make changes to
data.

2. Fault injection is a testing technique
where the application is fed anomalous
input to reveal behavior.

3. A zero-day attack is an exploit against
a vulnerability the same day the vul-
nerability becomes generally known.

Background
1. Goertzel, Karen Mercedes, et al,

Security in the Software Lifecycle:
Making Software Development Pro-
cesses – and the Software Produced by
Them – More Secure, Draft Version
1.2 (Aug. 2006), U.S. Department of
Homeland Security.

March 2007 www.stsc.hill.af.mil 25

About the Author

Kwok H. Cheng is an
associate at Booz Allen
Hamilton where he cur-
rently assists organiza-
tions in implementing
security at the application

level. He has a background in systems
engineering, process improvement, and
information assurance. Cheng has a mas-
ter’s degree in information and telecom-
munication systems, a certificate in
information security management, and is
a certified information systems security
professional.

Booz Allen Hamilton
8283 Greensboro DR
McLean,VA 22102
Phone: (703) 902-3060
E-mail: cheng_kwok@bah.com



26 CROSSTALK The Journal of Defense Software Engineering March 2007

Net-centric warfare is about employing
information age concepts to increase combat

power in war and mission effectiveness in opera-
tions other than war [1]. By linking sensor
networks, command and control net-
works, and shooter networks, warfighters
can achieve efficiencies in the full spec-
trum of operations by sharing informa-
tion in a common operating environment.
Unity of effort across organizational,
national, technical and spatial boundaries
is necessary. Warfighters have a duty to share
information with others, and in the tactical
environment it is not always obvious who
needs the information and exactly how
that information will be used. In some
respects, sharing information is a leap of
faith that the recipient will treat the infor-
mation properly, not abusing the implied
trust.

This article introduces aspects of the
tactical environment and some of the
complexities of sharing information in a
tactical network, describes the security
challenges and suggests a high-level secu-
rity architecture that applies adequate
measures without compromising the
information sharing needs of the
warfighter. Secure solutions to these types
of complex net-centric problems are

made achievable with the increased assur-
ance that can be placed on well-developed
and tested software.

The Tactical Information
Environment
Information in modern tactical networks
is generated from multiple sources: global
positioning system receivers, unmanned
and manned sensors, observations and
recordings of individuals, higher com-
mand and intelligence networks, the
Internet, and a variety of other sources. In
modern operations, information must
flow quickly from sensors to fusion
processes to analysts and decision makers
and, finally, to those who must execute
action. Taking more than a few minutes
from detection to action often significant-
ly reduces the effectiveness of operations.

Beyond the need for quick and wide
information flow, the tactical information
environment is also made complex with
differences in information sensitivity. As
one moves from the fighting echelon of a
tactical deployment back to national head-
quarters, there are fundamental differ-
ences in the sensitivity of data. For tactical
elements in direct contact with the enemy,
the majority of information processed is

highly time perishable and generally
focused on the following questions:
Where am I?  Where are my buddies?
Where is the enemy, and what are his
capabilities? Within a tactical headquarters
environment, the information becomes
more sensitive as plans are generated,
intelligence is analyzed, and the larger tac-
tical environment is monitored. Current
government sensitivity labels and handling
are based on definitions of sensitivities
that were created for nationally sensitive
information, only loosely relevant in the
tactical environment. Executive Order
12958 describes three subjective classifica-
tions based on the damage resulting from
compromise: TOP SECRET – exceptional-
ly grave damage; SECRET – serious damage;
and CONFIDENTIAL – damage to the
national security [2]. These are relatively
subjective groupings based on an inter-
preter’s understanding of the anticipated
impact of unauthorized disclosure and
centered on national security. There is no
time perishable consideration and all con-
sideration is toward the affect on national
security, not the impact on tactical opera-
tions; national security and tactical opera-
tions are related but are not the same
thing. Figure 1 illustrates the five types of
information and where they likely fit in
current classifications. The figure intro-
duces the term tactical sensitive for informa-
tion falling between confidential and
unclassified; it describes much of the
information handled in a tactical environ-
ment.

Beyond the varied information sensi-
tivities, warfighters also face the significant
challenge of information overload and
determination of correct distribution. To
deal with this, Alberts and Hayes suggest
that systems must transition from infor-
mation push designs toward information
post and smart pull designs.

Moving from a push to a post and
smart pull approach shifts the

Cross-Domain Information Sharing in a 
Tactical Environment

Net-centric warfare in the full spectrum of operations mandates information sharing among non-traditional partners across
security domains. This information sharing requires the exploitation of complex technologies and generates significant securi-
ty challenges. Traditional information assurance solutions to support cross-domain information sharing have focused heavily
on preventive measures, restricting information flow and reducing the risk of information compromise. This constraint on
information flow directly opposes the duty of the warfighter to share information. A holistic solution involving robust software
components, auditing, and permission management will reduce the risks of unauthorized information exposure to adequate
levels without imposing severe information flow constraints.

Mel Crocker 
General Dynamics Canada

TOP SECRET

SECRET

CONFIDENTIAL

TACTICAL SENSITIVE

UNCLASSIFIED

Strategic Intelligence

National Intel Links, All Source Cell

Tactical Intelligence, long term planning,

sensitive ops, locally relevant

Analysts, Headquarters and Command Post Staff, Special Ops

Tactical, operations and short term planning, locally relevant

Manned Sensors, Fighting Echelon Vehicles, Dismounted Commanders

Tactical, time perishable, locally relevant

Unmanned Sensors, Support Vehicles,

Dismounted Soldier, First Responders

External Non-Tactical Connections

Non-Government Organizations, Local Government, Internet

Classification
Information Types,

Consumers, and Producers

Figure 1: Information Sensitivity Classifications in the Tactical Environment



Cross-Domain Information Sharing in a Tactical Environment

March 2007 www.stsc.hill.af.mil 27

problem from the owner of infor-
mation having to identify a large
number of potentially interested
parties to the problem of having
the individual who needs informa-
tion identifying potential sources
of that information. The second
problem is a far more tractable
one. This is because it is much eas-
ier for the individual who has a
need for information to determine
its utility than for the producer to
make this judgment. [3]  

This concept does not line up with the
security tenet of limiting information dis-
tribution based on need to know and forces
a new paradigm to providing adequate
information assurance measures. The tac-
tical environment will always have a need
for some information to be pushed to
consumers because there are alerts and
critical developments that must be pushed
to specific subscribers, but this pushed
information is only a subset of the total
information shared in the tactical environ-
ment.

When information of a like sensitivity
is distributed within a defined community
of interest, it is considered an information
domain and is managed with a single secu-
rity policy1. Often information must flow
between domains; the cross-domain infor-
mation exchanges must be sufficiently
flexible to address the information sharing
paradigm shift necessary for net-centric
warfare.

Legacy Approaches to
Cross-Domain Solutions (CDS)
Cross-domain information flow has
always been considered a security-critical
event and the risks associated with this
type of transfer have been mitigated with
a security guard. When the security guard
is put into a system context, it is often
referred to as a CDS. In the simplest
sense, among other functions, a CDS con-
firms that information has been correctly
downgraded when traveling from a higher
domain to a lower domain, ensures that
malware cannot move from the lower to
the higher domain and confirms no infor-
mation leakage from a higher to a lower
domain. They are programmed for specif-
ic data formats, formally applying pre-
established sets of rules and in general are
very expensive. An example of a certified
security guard is the software application
Radiant Mercury which was developed
under contract for the U.S. Navy by
Lockheed Martin Corporation. When
placed on a suitably trusted platform, this

product automatically sanitizes, filters, and
downgrades formatted classified docu-
ments.

Researchers from the Mitre
Corporation have studied the evolution of
guards toward better supporting the
demands of today’s warfighter and have
concluded that guards should become
more flexible, capable of handling infor-
mation exchanges with libraries of
approved schemas [4]. Mitre also identi-
fied critical functionality necessary in the
security guard and some functionality that
mandates a visibility beyond the guard to
the connecting systems (e.g. workstation,
server and user identification). Although
some of these characteristics would be a
large improvement over current guards,
the suggested changes fail to address the
information requirements of the modern
tactical warfighter by constraining the
timeliness, reach, and richness of informa-
tion exchange. A point solution such as a
security guard cannot effectively satisfy
the information sharing demands of the
tactical warfighter and a holistic system
solution is required.

Beyond that, legacy security guards do
little to mitigate the risks posed by insid-
ers. A level of trust is placed in the indi-
vidual charged with assigning a sensitivity
label to information and in those who
handle or consume the information. With
the asymmetric threat posed by an insider,
it becomes even more important to ensure
individual trust is not abused2, and if it is
abused, to detect this transgression quick-
ly, prevent further damage and provide an
adequate forensic trail to hold the attacker
accountable. Previous CDS approaches
imposed preventive measures on the
unauthorized disclosure of information
instead of focusing on the trust placed in
the individual. Information that was incor-
rectly marked and/or carefully prepared to
avoid rules was unlikely to be detected by
a CDS. Although individuals will always be
subject to compromising trust relation-
ships, these transgressions would be more
detectable in a system solution.

Security Solution for Tactical
Cross-Domain Information
Sharing
The tactical environment demands a secu-
rity solution that provides measures to
keep the information protected, and that
allows for timely, widely distributed and
rich information exchanges. Solutions
today must reduce the risks associated
with information compromise such that
they are significantly outweighed by the
benefits of the system, thereby providing

commanders with the means to exercise
their duty to share information.

A number of significant factors have
recently changed, creating the opportunity
for new approaches to cross-domain
information sharing.

Certification Advances
The suggested architecture has to be certi-
fied by appropriate authorities and accred-
ited by commanders for operation in spe-
cific environments. Unfortunately, certifi-
cation and accreditation (C&A) have
become significant challenges for systems,
leading to solutions such as the security
guards discussed earlier. Instead of being
viewed as helpful, C&A is considered a hin-
drance. It is neither timely nor cost-efficient in an
era when technology advances are coming faster
than ever [5]. The Defense Information
Assurance Certification and Accreditation
Process (DIACAP), still in draft format3,
introduces changes that provide a frame-
work for certifying system solutions … to
support the paradigm shift from need to know
to need to share [5]. The DIACAP is
applicable to tactical information sharing
and introduces a process that could be
used to certify and accredit the high-level
security solution proposed in this article.

Technology Advances
Several technologies are creating opportu-
nities for better cross-domain security
solutions.
1. The Trusted Computing Exemplar

(TCX) project is creating a framework
for rapid high assurance system devel-
opment, addressing how high assur-
ance software components can be built
[6]. With the system solution envis-
aged in this article, several high assur-
ance components will be required at
various places in the system and the
TCX project identifies a process pre-
scribing how these types of compo-
nents can be built. Moreover, there are
a number of companies who have sig-
nificantly matured their software
development processes, achieving the
Software Engineering Institute’s
Capability Maturity Model and
Capability Maturity Model Integration
Level 5. Beyond mature software
development processes, the improve-
ments in verification of software have
also been significant and are becoming
the focus of intense research [7].
Creating software that predictably and
verifiably does what it purports to do
and nothing more is becoming achiev-
able within reasonable expense. All
these elements are critical to building a
system solution.



Software Security

28 CROSSTALK The Journal of Defense Software Engineering March 2007

2. The Advanced Encryption Standard
(AES) was approved in Federal
Information Processing Standards
Publication 197 dated 26 Nov. 2001 to
encrypt unclassified U.S. government
traffic. In June 2003, the National
Security Agency (NSA) approved
AES to protect classified U.S. traffic,
an unprecedented action in the world
of high-assurance encryption [8].
Because the algorithm is publicly
available, coalition partners can inde-
pendently implement the algorithm
and with a common key, they can
securely exchange information.

3. The Trusted Computing Group
(TCG)4, an alliance of manufacturers,
is in the process of establishing a
number of relevant security hardware
and system standards, effectively cre-
ating a framework for secure system
solutions. The TCG recognizes the
critical link with hardware, and several
manufacturers are beginning to mar-
ket compliant equipment. Regarding
the solution suggested in this article,
TCG compliant equipment would cre-
ate an affordable, stable hardware
base for the high assurance software
components.

4. Persistent information storage is
becoming very inexpensive and readi-
ly available devices can store immense
quantities of information. This is
important to support archiving audit
logs. Protecting the integrity of and
controlling access to the audit logs can
be securely accomplished using the
measures identified in the Trusted
Platform Module specifications. Draft
NIST Special Publication 800-86, Guide
to Computer and Network Data Analysis:
Applying Forensic Techniques to Incident
Response, and draft Special Publication
800-92, Guide to Security Log Manage-
ment provide considerable rigor to
audit processes and log management.

5. The Group Security Association Key
Management Protocol (GSAKMP)
provides a security framework for creating
and managing cryptographic groups on a net-
work [9]. If information can be tag-
ged for a particular community of
interest, access to that information
can be managed by cryptographic
mechanisms. Warfighters only need to
send the information to a community
of interest, and the framework pro-
vided by GSAKMP will ensure secure
access is managed for participants.
Separating the complexity of correct-
ly tagging information from distribu-
tion decisions will allow for a more
efficient information sharing environ-

ment.
6. There have been a number of signifi-

cant advances recently toward certi-
fied components leading toward a cer-
tified Multiple Independent Levels of
Security (MILS) architecture [10]. A
MILS architecture leads toward a
degree of confidence in the separa-
tion of information within the sys-
tem, avoiding so much technical com-
plexity that the system cannot practi-
cally be built. This creates well-
enforced system sandboxes where
software can be forced to execute only
within approved parameters. The
High Assurance Platform (HAP) is a
computer that provides MILS capabil-
ities using industry standard commer-
cial hardware, software and applica-
tions, and should be available to a nar-
row community in 2007. It is intended
to provide NSA certified separation
to multiple operating systems running
simultaneously in different security
domains5.

7. The Department of Defense (DoD)
Discovery Metadata Specification was
created to allow for efficient informa-
tion discovery in US government net-
works [11]. It includes a number of
tags that are relevant to security,
including classification, declassifica-
tion date, dissemination controls, and
others. Moreover, search engines have
become increasingly more efficient
with hybrid designs of crawler/spider
based components and human pow-
ered directories. Despite the growing
quantity of information available,
finding relevant information is
becoming easier due to the use of
metadata labels and strong search
engines.
A systemic information assurance

approach must provide layered security
measures that reduce the need for infor-
mation content filtering measures. The
solution relies on increasing the strength
and reliability of accountability, detec-
tive and reactive measures, and conse-
quently increases flexibility in informa-
tion sharing. The following high-level
solution builds on the advantages pre-
sented by recent maturations in select
technologies.

Encryption to support confidentiality
and integrity of information flows should
be established from source to destination,
so devices at the boundary will not be
able to examine the contents of packets.
This means that some of the traditional
functionality of the CDS must be pushed
to the information sources, in most cases
data terminals. It is important to note that

the destination need not necessarily be
another data terminal but could be traffic
destined for a community of interest.

The following functionality must exist
at information source points, often per-
sonal computers:
• Trusted identification and access con-

trol measures must be resident in the
source data terminals. These measures
link user triggered actions to individu-
als and confirm privileges before
allowing actions. Systems and proto-
cols provide the means to manage
identities across disparate networks
with a high degree of confidence and
minimum inconvenience to the user
community. Regarding authorization,
the use of X.509 based attribute cer-
tificates and a Privilege Management
Infrastructure offers considerable
flexibility to handle role based author-
ity [12] and progress has been made
extending Public Key Infrastructures
into tactical environments.

• Trusted audit measures must be resi-
dent on the data terminals to capture
all security relevant events. With the
establishment of the TCG standards
and resulting hardware, the audit logs
can be securely protected and with the
availability of inexpensive storage, the
logs can hold a tremendous amount
of information before needing to be
rolled over.

• Trusted domain separation must exist
on the data terminals. There is consid-
erable research into making trusted
operating systems more accessible and
commercial operating systems more
secure, providing sufficient flexibility
to strike the right risk exposure and
functionality. Moreover, with the
establishment of TCG standards and
hardware, the increased confidence in
the operating systems and software
will be strongly based on trusted hard-
ware. This should make domain sepa-
ration on desktops achievable and
affordable in the near term.

• Trusted encryption measures with an
appropriate algorithm must provide
adequate confidentiality and integrity
protection for information flows
between data terminals. Trusted
Network Connect from the TCG
offers an assured encryption solution
and the digital signature, random
number generation and protected
storage of the Trusted Platform
Module, again from the TCG, offers
the other necessary primitives for a
secure solution.

• Malicious content filtering that
detects and prevents the execution of



Cross-Domain Information Sharing in a Tactical Environment

March 2007 www.stsc.hill.af.mil 29

malware must exist on all data termi-
nals. With host firewalls and advances
in malware protection products, net-
worked computers can connect to the
Internet with a degree of confidence.
In a tactical environment, the risk of
attack is far reduced and the potential
for successful malware introduction is
also reduced.

• There must be trusted, locally con-
trolled interfaces that allow for move-
ment of select data from one domain
on a data terminal to another domain
on the same terminal. The term con-
trolled interface is not carefully defined
in this article, but in general, it medi-
ates information exchanges, looking
for defined transgressions when mov-
ing data between domains. Effectively
a controlled interface gives authorized
users some flexibility to move data
electronically between domains.

Within the connecting network, there
must be a number of complimentary ser-
vices:
• An identity and permission manage-

ment service must provide compli-
mentary functionality to the capabili-
ties needed at the information
sources.

• Network and distributed intrusion
detection and reaction services must
exist. Other than receiving alerts from
network intrusion detection sensors,
this service would also receive alerts
from host based intrusion detection
sensors, collect log data for detailed
analysis and react to events based on
policy.

• A policy management service pro-
vides the needed flexibility for a tacti-
cal network. This service would estab-
lish policies that relate to the network
configuration and security posture.
These policies would be dynamic
based on changes in information flow
requirements, changing threats and
various other influences.

• A service that provides security asso-
ciation and key management is needed
to support GSAKMP.

A boundary protection system should
contain the following functionalities at
the network boundaries.
• Identity and access control to ensure

the users passing information or
drawing information across the
domain boundary are authorized to
do so.

• Flow control measures that can
accommodate the need for supporting
quality of service information
exchanges such as near real-time
graphical collaboration sessions, and

control network ingress from unwant-
ed sources and/or unwanted traffic.

• Audit measures that work with intru-
sion detection and prevention systems
to detect malicious activity and/or
exposures in a timely fashion and pro-
vide non-repudiation of information
flows.

• The configuration of boundary pro-
tection services must be dynamically
configurable by policy, allowing infor-
mation flow based on tactical condi-
tions.
This high-level architecture (Figure 2)

has a number of implementation chal-
lenges that require deeper analysis, but
these have not been identified or
explored in this article for brevity pur-
poses.

Conclusion
To support the unity of effort necessary
in today’s combat environment, warfight-
ers have a duty to share information
widely and quickly in rich exchanges,
some of which must cross security
domains. This article suggests a holistic
high-level solution to securing cross-
domain exchanges that will not excessive-
ly constrain the exchanges, taking advan-
tage of advances in technology and poli-
cy. The solution effectively takes some of
the trust and functionality originally resi-
dent in traditional CDS and moves it into
information sources, system services, and
boundary protection devices.

Although the solution suggested here
has been applied to the tactical environ-
ment, elements of the system solution
may lend itself to other environments
with similar problem spaces. Instead of
tactical domains, one could consider the
domains relevant in medical information

systems. Patients must securely share pri-
vate information with family general
practitioners, and occasionally general
practitioners must share elements of this
information with specialists. The
exchange between patient, general practi-
tioner, and specialist creates a small com-
munity of interest. At the same time,
some of this information may be useful
to those needing statistics, but the posting
agency may not really be aware of the
information needs of the authorized con-
sumers and may not be best able to man-
age the makeup of the authorized con-
sumers. Managing access might be better
placed with others whose primary exper-
tise is privacy, access control, and infor-
mation presentation. Throughout these
exchanges, actions must be logged to
ensure violations can be handled quickly.

This article has not proposed any dra-
matic new technologies; it has simply sug-
gested re-positioning some relatively well-
understood security functionality to non-
traditional places in the network in the
hopes of satisfying the information shar-
ing needs of the warfighter.u

References
1. DoD. “Network Centric Warfare.”

DoD Report. 27 July 2001 <www.
dod.mil/nii/NCW/>.

2. Bush, George W. Further Amendment
to Executive Order 12958 <www.
whitehouse.gov/news/releases/
2003/03/20030325-11.html>.

3. Alberts, D.S., and R.E. Hayes. “Power
to the Edge: Command and Control in
the Information Age.” CCRP (June
2003): 14-15.

4. Reed, Nancy. “Security Guards for the
Future Web.” Technical Report
04W0000092. Mitre Corporation,

DATA TERMINAL

C

R

Y

P

T

O

BOUNDARY

PROTECTION
SYSTEM

C

R

Y

P

T

O

SYSTEM

SERVICES

CRYPTO

• Trusted platform
• Trusted identification and authentication
• Trusted audit
• Trusted domain separation
• Trusted encryption
• Malicious content detection

and prevention
• Trusted controlled interface for 

cross-domain communication
• XML data labeling

• Identity and authorization filtering
• Network intrusion detection/reaction
• Policy-based configuration
• Flow control measures

• Identity management
• Permission management
• Network and distribution intrusion detection/reaction
• Policy management
• Security association and key management

Coalition

Partners

Figure 2: Suggested High-Level Solution



2004 <www.mitre.org/work/tech_
papers/tech_papers_05/05_0166/05_
0166.pdf>.

5. Wierum, Jenifer M. “Defense Infor-
mation Assurance Certification and
Accreditation Process and the Global
Information Grid Information Assur-
ance Architecture.” 10th International
Command and Control Research and
Technology Symposium The Future of
C2, Mar. 2005.

6. Irvine, Cynthia E., Timothy E. Levin,
Thuy D. Nguyen, and George W.
Dinolt. “The Trusted Computing
Exemplar Project.” Proc. of the 5th
IEEE Systems, Man and Cybernetics
Information Assurance Workshop,
United States Military Academy, West
Point, NY, 10-11 June 2004.

7. Jones, Cliff, Peter O’Hearn, and Jim
Woodcock. “Verified Software: A
Grand Challenge.” IEEE Computer
39.4 (2006).

8. Committee on National Security
Systems. “National Policy on the Use
of the Advanced Encryption Standard
to Protect National Security Systems
and National Security Information.”
U.S. CNSS Policy No. 15 Sheet No 1.
June 2003.

9. Internet Engineering Task Force.
“Group Secure Association Group
Management Protocol.” Internet
Draft. 2005 <www3.ietf.org/proceed

ings/06mar/IDs/draft-ietf-msec-gsa
kmp-sec-10.txt>.

10. Alves-Foss, Jim, Carol Taylor, and Paul
Oman. “A Multi-layered Approach to
Security in High Assurance Systems.”
Proc. of the 37th Hawaii International
Conference on System Sciences, 2004.

11. Magar, A. “Investigation of Tech-
nologies and Techniques for Labeling
Information Objects to Support
Access Management.” Defense Re-
search and Development Canada,
Report DRDC Ottawa CR 2005-166.
2005

12. Chadwick, David. “The X.509
Privilege Management Infrastructure.”
Proc. of the North Atlantic Treaty
Organization Advanced Networking
Workshop on Advanced Security
Technologies in Networking, Bled,
Slovenia, June 2003. University of
Salford, 2003 <http://sec.isi.salford.
ac.uk/Papers.htm>  

Notes
1. A security domain is defined by the

Internet Security Glossary as an envi-
ronment or context that is defined by a secu-
rity policy, security model, or security architec-
ture to include a set of system resources and
the set of system entities that have the right to
access the resources <www.ietf.org/rfc/
rfc2828.txt>.

2. The John Anthony Walker Jr. story of

insider espionage activities over eigh-
teen years can be found at <www.
crimelibrary.com/terrorists_spies/
spies/walker/1.html>.

3. A draft version of the DIACAP is
available at <http://iase.disa.mil/dits
cap/ditscap-to-diacap.html#diacap>.

4. More information on the TCG and its
standards can be found at <www.trust
edcomputinggroup.org>.

5. The HAP is described at <www.gdc4s.
com/contacts/user_conf/topics.cfm>.

Software Security

30 CROSSTALK The Journal of Defense Software Engineering March 2007

About the Author

Mel Crocker is the
information assurance
technical lead for the
Land Command Support
System program within
General Dynamics

Canada. He has a master’s degree in soft-
ware engineering from Royal Military
College, and a Bachelor of Science in
math and physics.

General Dynamics Canada
1020-68th AVE N.E.
Calgary, AB  T2E 8P2
Phone: (403) 295-5075
E-mail: melvin.crocker@

gdcanada.com



BACKTALK

March 2007 www.stsc.hill.af.mil 31

Are you tired of having to constantly report problems to your boss? Are you tired of coming up with yet another lame excuse for
problems caused by others? Let CrossTalk save you some time with the Department of Defense General-Purpose Excuse

and Explanation Memo form (DODGE EM). Simply get yourself a single six-sided die, start rolling, and fill in the blanks below. This
gives you well over 45,000 possible explanations from which to choose. You will save so much time with paperwork, you might actu-
ally be the first developer on your project to actually spend more time developing than doing paperwork!

— David A. Cook, Ph.D.
Senior Research Scientist and Principle Member of the Technical Staff

The AEgis Technologies Group, Inc.
dcook@aegistg.com 

Project Management Using Random Events

TO: --Roll Dice, Insert from Table 1--

I am truly sorry to report that my project is --Roll Dice, Insert
from Table 2--.

I first realized this --Roll Dice, Insert from Table 3--.

I’m sorry, but this happened because we --Roll Dice, Insert from
Table 4--.

To put us on the right path, we need to --Roll Dice, Insert from

Table 5--.

It would really help us if you would --Roll Dice, Insert from
Table 6--.

This won’t happen again – because next time, I will --Roll Dice,
Insert from Table 7--.

Sincerely,
--Insert your name here--

1.    My boss.
2.    My boss’ boss.
3.    The General Accounting Office.
4.    Congressional Oversight Committee.
5.    My mommy.
6.    Those who read this after I go.

Table 1

1.   Running over schedule.
2.   Running out of money.
3.   REALLY running out of time and money.
4.   Making the developers nauseous.
5.   Forcing those associated with the
 project to rewrite their resume.
6.   Being referred to in-house as the
 “resume stain."

Table 2

1.   This morning.
2.   In the middle of the night, after having
 the $2.99 “all-you-can-eat” burrito special.
3.   When faced with certain and
 imminent discovery.
4.   After everybody else figured it out
 first months ago.
5.   In spite of massive amounts of
 anti-depressants and competent
 psychiatric care.
6.   After all of the developers took up

meditation and fled the country.

Table 3

1.   Ignored the advice of all the
 consultants.
2.   Listened to every single consultant.
3.   Re-scoped the requirements 14 times.
4.   Never had any requirements.
5.   Spent all the budget, and still never
 had any requirements.
6.   Built it and made it to test without any
 real requirements.

Table 4

1.   Show up occasionally to the stakeholder
 meetings.
2.   Quit showing up to the stakeholder
 meetings.
3.   Micromanage somebody else for JUST

a few days.
4.   Show up late, leave early, and stay
 behind closed doors.
5.   Realize that your degree in sanitation

engineering does not make you a
 technical expert – and that security
 DOES NOT mean wearing a Depends.
6.   Attend church regularly and pray for the
 project – it’s our only hope.

Table 6

1.   Read CrossTalk regularly.
2.   Read CrossTalk regularly.
3.   Read CrossTalk regularly.
4.   Read CrossTalk regularly.
5.   Read CrossTalk regularly.
6.   Read CrossTalk regularly.

Table 7

1.    My boss.
2.    My boss’ boss.
3.    The General Accounting Office.
4.    Congressional Oversight Committee.
5.    My mommy.
6.    Those who read this after I go.

Table 1

1.   Running over schedule.
2.   Running out of money.
3.   REALLY running out of time and money.
4.   Making the developers nauseous.
5.   Forcing those associated with the
 project to rewrite their resume.
6.   Being referred to in-house as the
 “resume stain."

Table 2

1.   This morning.
2.   In the middle of the night, after having
 the $2.99 “all-you-can-eat” burrito special.
3.   When faced with certain and
 imminent discovery.
4.   After everybody else figured it out
 first months ago.
5.   In spite of massive amounts of
 anti-depressants and competent

psychiatric care.
6.   After all of the developers took up

meditation and fled the country.

Table 3

1.   Ignored the advice of all the
 consultants.
2.   Listened to every single consultant.
3.   Re-scoped the requirements 14 times.
4.   Never had any requirements.
5.   Spent all the budget, and still never
 had any requirements.
6.   Built it and made it to test without any
 real requirements.

Table 4

Table 5

1.   Show up occasionally to the stakeholder
 meetings.
2.   Quit showing up to the stakeholder
 meetings.
3.   Micromanage somebody else for JUST

a few days.
4.   Show up late, leave early, and stay
 behind closed doors.
5.   Realize that your degree in sanitation

engineering does not make you a
 technical expert – and that security
 DOES NOT mean wearing a Depends.
6.   Attend church regularly and pray for the
 project – it’s our only hope.

Table 6

1.   Read CrossTalk regularly.
2.   Read CrossTalk regularly.
3.   Read CrossTalk regularly.
4.   Read CrossTalk regularly.
5.   Read CrossTalk regularly.
6.   Read CrossTalk regularly.

Table 7

1.    My boss.
2.    My boss’ boss.
3.    The General Accounting Office.
4.    Congressional Oversight Committee.
5.    My mommy.
6.    Those who read this after I go.

Table 1

1.   Running over schedule.
2.   Running out of money.
3.   REALLY running out of time and money.
4.   Making the developers nauseous.
5.   Forcing those associated with the
 project to rewrite their resume.
6.   Being referred to in-house as the
 “resume stain."

Table 2

1.   This morning.
2.   In the middle of the night, after having

the $2.99 “all-you-can-eat” burrito special.
3.   When faced with certain and
 imminent discovery.
4.   After everybody else figured it out
 first months ago.
5.   In spite of massive amounts of
 anti-depressants and competent

psychiatric care.
6.   After all of the developers took up

meditation and fled the country.

Table 3

1.   Ignored the advice of all the
 consultants.
2.   Listened to every single consultant.
3.   Re-scoped the requirements 14 times.
4.   Never had any requirements.
5.   Spent all the budget, and still never
 had any requirements.
6.   Built it and made it to test without any
 real requirements.

Table 4

1 Hi lt t h k thing
 

Table 5

1.   Show up occasionally to the stakeholder
 meetings.
2.   Quit showing up to the stakeholder
 meetings.
3.   Micromanage somebody else for JUST

a few days.
4.   Show up late, leave early, and stay
 behind closed doors.
5.   Realize that your degree in sanitation

engineering does not make you a
 technical expert – and that security
 DOES NOT mean wearing a Depends.
6.   Attend church regularly and pray for the
 project – it’s our only hope.

Table 6

1.   Read CrossTalk regularly.
2.   Read CrossTalk regularly.
3.   Read CrossTalk regularly.
4.   Read CrossTalk regularly.
5.   Read CrossTalk regularly.
6.   Read CrossTalk regularly.

Table 7

1.    My boss.
2.    My boss’ boss.
3.    The General Accounting Office.
4.    Congressional Oversight Committee.
5.    My mommy.
6.    Those who read this after I go.

Table 1

1.   Running over schedule.
2.   Running out of money.
3.   REALLY running out of time and money.
4.   Making the developers nauseous.
5.   Forcing those associated with the
 project to rewrite their resume.
6.   Being referred to in-house as the
 “resume stain."

Table 2

1.   This morning.
2.   In the middle of the night, after having
 the $2.99 “all-you-can-eat” burrito special.
3.   When faced with certain and
 imminent discovery.
4.   After everybody else figured it out
 first months ago.
5.   In spite of massive amounts of
 anti-depressants and competent

psychiatric care.
6.   After all of the developers took up

meditation and fled the country.

Table 3

1.   Ignored the advice of all the
 consultants.
2.   Listened to every single consultant.
3.   Re-scoped the requirements 14 times.
4.   Never had any requirements.
5.   Spent all the budget, and still never
 had any requirements.
6.   Built it and made it to test without any
 real requirements.

Table 4

1.   Hire a consultant who knows something
 

Table 5

1.   Show up occasionally to the stakeholder
 meetings.
2.   Quit showing up to the stakeholder
 meetings.
3.   Micromanage somebody else for JUST

a few days.
4.   Show up late, leave early, and stay
 behind closed doors.
5.   Realize that your degree in sanitation

engineering does not make you a
 technical expert – and that security
 DOES NOT mean wearing a Depends.
6.   Attend church regularly and pray for the

project – it’s our only hope.

Table 6

1.   Read CrossTalk regularly.
2.   Read CrossTalk regularly.
3.   Read CrossTalk regularly.
4.   Read CrossTalk regularly.
5.   Read CrossTalk regularly.
6.   Read CrossTalk regularly.

Table 7

1. This morning.
2.   In the middle of the night, after having
 the $2.99 “all-you-can-eat” burrito special.
3.   When faced with certain and
 imminent discovery.
4.   After everybody else figured it out
 first months ago.
5.   In spite of massive amounts of
 anti-depressants and competent
 psychiatric care.
6.   After all of the developers took up

meditation and fled the country.

Table 3

1.   Ignored the advice of all the
 consultants.
2.   Listened to every single consultant.
3.   Re-scoped the requirements 14 times.
4.   Never had any requirements.
5.   Spent all the budget, and still never
 had any requirements.
6.   Built it and made it to test without any
 real requirements.

Table 4

1.   Hire a consultant who knows something
 about security.
2.   Fire the consultants who know nothing
 about security.
3.   Switch to Ada – a secure language.
4.   Realize that 53 designers and no coders
 is a bad mix.
5.   Figure out who the users might be and
 try talking to one about security.
6.   Have the developers take up

interpretative ballet as a hobby.

Table 5

3

4

5

6

1.   R
2.   R
3.   R
4.   R
5.   R
6.   R

1.    My boss.
2.    My boss’ boss.
3.    The General Accounting Office.
4.    Congressional Oversight Committee.
5.    My mommy.
6.    Those who read this after I go.

Table 1

1.   Running over schedule.
2.   Running out of money.
3.   REALLY running out of time and money.
4.   Making the developers nauseous.
5.   Forcing those associated with the
 project to rewrite their resume.
6.   Being referred to in-house as the

“resume stain."

Table 2

1.   This morning.
2.   In the middle of the night, after having
 the $2.99 “all-you-can-eat” burrito special.
3.   When faced with certain and
 imminent discovery.
4.   After everybody else figured it out
 first months ago.
5.   In spite of massive amounts of
 anti-depressants and competent
 psychiatric care.
6.   After all of the developers took up

meditation and fled the country.

Table 3

1.   Ignored the advice of all the
 consultants.
2.   Listened to every single consultant.
3.   Re-scoped the requirements 14 times.
4.   Never had any requirements.
5.   Spent all the budget, and still never
 had any requirements.
6.   Built it and made it to test without any
 real requirements.

Table 4

1.   Show up occasionally to the stakeholder
meetings.

2.   Quit showing up to the stakeholder
 meetings.
3.   Micromanage somebody else for JUST

a few days.
4.   Show up late, leave early, and stay
 behind closed doors.
5.   Realize that your degree in sanitation

engineering does not make you a
technical expert – and that security

 DOES NOT mean wearing a Depends.
6.   Attend church regularly and pray for the
 project – it’s our only hope.

Table 6

1.   Read CrossTalk regularly.
2.   Read CrossTalk regularly.
3.   Read CrossTalk regularly.
4.   Read CrossTalk regularly.
5.   Read CrossTalk regularly.
6.   Read CrossTalk regularly.

Table 7

1.    My boss.
2.    My boss’ boss.
3.    The General Accounting Office.
4.    Congressional Oversight Committee.
5.    My mommy.
6.    Those who read this after I go.

Table 1

1.   Running over schedule.
2.   Running out of money.
3.   REALLY running out of time and money.
4.   Making the developers nauseous.
5.   Forcing those associated with the
 project to rewrite their resume.
6.   Being referred to in-house as the
 “resume stain."

Table 2

1.   This morning.
2.   In the middle of the night, after having
 the $2.99 “all-you-can-eat” burrito special.
3.   When faced with certain and
 imminent discovery.
4.   After everybody else figured it out
 first months ago.
5.   In spite of massive amounts of
 anti-depressants and competent

psychiatric care.
6.   After all of the developers took up

meditation and fled the country.

Table 3

1.   Ignored the advice of all the
 consultants.
2.   Listened to every single consultant.
3.   Re-scoped the requirements 14 times.
4.   Never had any requirements.
5.   Spent all the budget, and still never
 had any requirements.
6.   Built it and made it to test without any
 real requirements.

Table 4

1.   Hire a consultant who knows something
 

Table 5

1.   Show up occasionally to the stakeholder
 meetings.
2.   Quit showing up to the stakeholder
 meetings.
3.   Micromanage somebody else for JUST

a few days.
4.   Show up late, leave early, and stay
 behind closed doors.
5.   Realize that your degree in sanitation

engineering does not make you a
 technical expert – and that security
 DOES NOT mean wearing a Depends.
6.   Attend church regularly and pray for the

project – it’s our only hope.

Table 6

1.   Read CrossTalk regularly.
2.   Read CrossTalk regularly.
3.   Read CrossTalk regularly.
4.   Read CrossTalk regularly.
5.   Read CrossTalk regularly.
6.   Read CrossTalk regularly.

Table 7



CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is
co-sponsored by the

following organizations:


	Front Cover
	Table of Contents
	From the Publisher
	Software Security
	Being Explicit About Security Weaknesses
	Secure Coding Standards
	How a Variety of Information Assurance MethodsDelivers Software Security in the United Kingdom
	High-Leverage Techniques for Software Security
	Baking in Security During theSystems Development Life Cycle
	Cross-Domain Information Sharing in aTactical Environment

	Coming Events
	Web Sites
	SSTC 2007
	BackTalk
	Back Cover



